MODELBUS

ModelBus User Guide

Version: 0.84 corresponding to ModelBus Release 1.9.9
Date: 7t 22t July 2015

Web: www.modelbus.org

Email: info (at) modelbus (dot) org

~ Fraunhofer
FOKUS

Ingraniy Solutions

http://www.modelbus.org/

MODELBUS
ModelBus User Guide

This document has been created by the ModelBus group at Fraunhofer FOKUS
(www.modelbus.org) supported by the “Kompetenzzentrum — Das virtuelle Fahrzeug,

Forschungsgesellschaft mbH [ViF]” (http://www.vif.tugraz.at/)

http://www.modelbus.org/
http://www.vif.tugraz.at/

ModelBus User Guide

MODELBUS

PART | Introduction

1. Whatis the ModelBus?

2. ModelBus Architecture

PART Il Installation of Repository and Client for Eclipse

3. How toinstall the ModelBus

3.1 Installation of a “local ModelBus” under Windows

3.1.1 Installation Instructions for Release 1.9.7 and later

3.1.2 Installation Instructions for Older Releases

3.2 Start and Shutdown of ModelBus Server

4. |Installing ModelBus on a Linux (Ubuntu 12.04) Desktop

4.1 Installing the Server

4.2 Installing the Client

5. Setting up ModelBus for Encrypted Communication (HTTPS)

5.1 SSL Configuration in ModelBus Configuration Model

5.2 Creating ModelBus SSL Certificate

6. ModelBus Manager

6.1 What is ModelBus Manager?

6.2 How toInstall ModelBus Manager?
6.3 Login to ModelBus Manager

6.4 Accessing the Repository

6.5 Export Repository Contents

6.6 Managing Users and Access Rights

7. ModelBus Proxy

7.1 Server-Side Setup

7.2 Client-Side Setup

8. Installing ModelBus Client for Eclipse

8.1 Configuration Options with Local ModelBus Server

8.2 Configurations Options for “Standalone” Client

8.3 Installing TeamProvider Feature for Eclipse

8.4 Test the ModelBus Server and Client installation

3

11
13
15
15
16
21
23
25
25
32
35
35
37
40
40
40
41
42
44
45
47
47
47
53
53
53
54
57

MODELBUS
ModelBus User Guide

PART Ill Eclipse Client 63
9. ModelBus Repository Access Control 65
10. Managing Access Rights with ModelBus Client for Eclipse 68
10.1 Finding the “model” namespace in the repository 68
10.2 Check out a name space to the local workspace as a shared project 69
10.3 Add a new user and commit changes to the Repository 70
10.4 Change the password for the current user 74
10.5 Example User Access Model 75
11. Checking ModelBus and Services Status 78
12. The Team Synchronizing Perspective 79
12.1 Add a project to the ModelBus repository 81
12.2 Producing and discovering conflicts 85
12.3 Inspecting the conflicts using a Compare editor 88
12.4 Some explanations on the Team Synchronizing perspective 89
13. Locking Elements in the Repository 92
13.1 Locking Files and complete Models 92
13.2 Locking Model Elements in the Repository 95
14. The ModelBus Repository Exploring Perspective 98
15. Notifications 100
16. Dependencies 101
17. Fragmentation 103
18. Interactive Mode 104
PART IV_Orchestration 107
19. Orchestration 109
19.1 Modeling the basic workflow with BPMN 110
19.2 Basic BPMN diagram with interface descriptions 113
19.3 Mapping data and using variables in the workflow 117
19.4 The generated executable BPEL workflow 119
19.5 Deployment and execution of the workflow 120
19.6 Including user interaction in a workflow 121

4

ModelBus User Guide

MODELBUS

PART V Developer API

20. ModelBus Architecture

20.1 Concept

20.2 Repository

20.3 Interaction Pattern

20.4 Provider Adapter

20.5 Consumer Adapter

20.6 ModelBus Core Lib API

21. Code Examples

21.1 Repository Browser

21.2 Microsoft .NET based Repository Browsing

21.3 Model Fragmentation

21.4 Dependencies Support

21.5 Notification Listener

21.6 How to write an Adapter

21.6.1

1st Project — Interface

21.6.2

Second Project — Provider

21.6.3

Third Project — Consumer

21.64

Relations between the parts of the adapter realizations

22. ModelBus Exception Specifications

23. Trouble Shooting Guide

Appendix B A more complex Consumer / Provider Adapter Implementation Example

24. A more complex Consumer / Provider Adapter

24.1 How to get the example

24.2 The Library Service

24.2.1

The Library Meta Model

24.2.2

The Service Interface

24.2.3

The Service Provider Adapter

24.2.4

The Service Consumer Adapter

24.2.5

Direct Invocation of the Service using the WSDL

5

127
129
129
130
132
133
134
135
136
136
139
141
142
144
146
147
151
162
166
170
172
175
177
177
179
179
180
182
187
196

MODELBUS
ModelBus User Guide

24.3 The Source Code of the Java Adapter Implementation Classes used 197
24.3.1 The Library Service Interface 197
24.3.2 The Service Provider Adapter 198
24.3.3 The Service Consumer Adapter 205

PART |

Introduction

™ MODELBUS
ModelBus User Guide

1. What is the ModelBus?

ModelBus is a model-driven tool integration framework which allows you to build a
seamlessly integrated tool environment for your system engineering process.

Avionics

Domain Specific
Language (DSL)
Engineering

£3 Model Driven &
Process
Enactment

E-Goverment

Model
Consistency

Automated
Model
Transformations

Model
Based
Testing

Finance Defense

ModelBus addresses some of the common problems in today’s software development
process:

— Inconsistencies between development artifacts
To cover the whole software development process you mostly need to apply different
independent tools. Modeling artifacts within one tool do not know about modeling
artifacts in another tool. There exist relationships between those artifacts, but they
are not explicitly covered and handled by the separate tools.

— Low degree of automation
Due to the separation of the tools it is quite often complicated to automate the
development process. Combination of tools is mostly a manual process using the
export and import mechanism of the tools and perhaps manually adapting the
intermediate results. Those manual workflows are time consuming and error-prone.

— Insufficient common terminology
Different tools quite often use different terminologies which need to be adapted or a
common terminology to be used

— Complexity
Complexity of the systems as well as the processes is a real challenge. Automating

MODELBUS
@ ModelBus User Guide

processes, concentrating on specific aspects through views could help to handle this
complexity.

— Cost
Automating processes, reuse of sub steps could help to decrease costs

— Decoupled software tools
Decoupled tools need means to handle relationships of modeling artifacts crossing
tools boundaries

— Produced data remain proprietary and depend on specific tools
Quite often data created within one tool have a tool specific format. Transformations
and adaptations are needed to cross tool boundaries

ModelBus addresses integration challenges like:

e Data Integration: How can tools share data (models)?

e Control Integration ("service sharing"): How can a tool use a service provided by
another tool?

e Process Integration: How can software engineering processes that involve several
tools, roles and work products be supported?

How does ModelBus help?

e ModelBus offers open interfaces and is based on SOA principles.

e Commercial of the shelf tools (COTS) can be plugged to the ModelBus to make their
functionality available.

e ModelBus helps you automating your development process.

e ModelBus supports transparent model sharing.

e ModelBus allows homogenous views on heterogeneous data and model sources.

e ModelBus is built on existing standards (SOAP, MOF, EMF, BPMN, BPEL, JMI, OCL).

The ModelBus Core components are provided as Open Source.

10

™ MODELBUS
ModelBus User Guide

2. ModelBus Architecture

Figure 1 and Figure 2 within this section show different aspects of the ModelBus and its use.

The first shows the ModelBus as integration and communication platform connecting
different services offered by tools connected to the ModelBus. Based on SOA principles it
also offers a service registry and notification service as core services. Workflows that can be
executed automatically can be defined and executed using orchestration tools. Models can
be stored within Repositories (Model Storage) and made available for all tools attach to the
ModelBus. Generic model verification services can be used to verify intermediate modeling
results with respect to some modeling guidelines. Model transformations can be used to
transform the results created with one tool to be usable in the context of another tool.
Keeping track of the relationships between the artifacts within the model can be supported
by a traceability service.

Requirements Deployment:

Management
Verification
Coding Tool ' I Unit Test Tool | Control Tool l I °""$‘T“°"|

Lifecycle Tools Process Enactment

Model Bus

Core Services Modelling Services

Service B
Regi Notification Verification Transformation Testing
Model Storage | Simulation “ Analysis ” Traceability I| G :er = l

Figure 1 The ModelBus General Structure

Figure 2 shows another view on the ModelBus.

11

™ MODELBUS
ModelBus User Guide

A Tools - Frontend

¢ Trans-
armation
N~
Deploy-
ment Checking
Developrment

Nt
0 Process 0

Indexing

]

Repositories

Figure 2 The ModelBus General Architecture

12

PART i

Installation of
Repository and Client for Eclipse

MODELBUS
ModelBus User Guide

3. How to install the ModelBus

Figure 3 shows a typical deployment of a simple ModelBus installation. The ModelBus
installation is usually done on a dedicated server or even on your local machine. In this
simple installation the ModelBus consists of a WebServer with the ModelBus repository,
which is based on Subversion. You can install this locally at your site or you can use an
installation remotely, run by another site. In more sophisticated installations the ModelBus
server most likely also includes other modeling services (e.g. transformation).

On the left side we see the tools that makes use of services (e.g. repository) through the
ModelBus using WebServices communication mechanisms. Those have to be installed
separately. The concrete installation process may differ from tool to tool.

EMF Model
I cOmpgr: | { WebService »
Eclipse . - ModelBus
i | EcnpseJ okt

RSA Model /
Compare
WebService

|\ TeamProvider RSA
Subversion

Other Tool ——

File System ModelBus

/\
‘-l & r WebServer
=

A

Figure 3 General Deployment Architecture

We will illustrate the installation of a local ModelBus and the installation of a “client” based
on Eclipse and offering Team support on the ModelBus repository to the user.

3.1 Installation of a “local ModelBus” under Windows

A Please note: The ModelBus installation procedure has changed significantly with the
release of version 1.9.7. For installation instructions for older versions please refer to
the user guides of the corresponding version.

15

MODELBUS
ModelBus User Guide

You will find all the packages you need through the ModelBus Web site:

http://www.modelbus.org/en/modelbusdownloads.html .

Always use the links from the ModelBus Website to get the actual current release version.

The ModelBus Server and Repository is pre-bundled, but not complete with SVN-support.
Due to license restrictions you need to download this by your own. First download “Server”
from the Website. With release 1.9.5 there will be different versions of the ModelBus Server
on the Web site. This document focuses on the Windows installation of ModelBus. It
depends on your personal taste which Eclipse based version to use. In our example
installation the Juno based Win32 version will be used. All other versions are installed quite
similar. Be aware that for a 64 bit installation you also need a 64 bit Java JDK.

Unpack it to a location as you find appropriate, e.g. C:\ModelBus\server.

The ModelBus installation procedure has changed significantly with the release of version
1.9.7. However, for reasons of backward compatibility, the settings for older releases will
work with release version 1.9.7 as well. In the following, both the installation process for the
1.9.7 release and for older releases will be explained in detail.

3.1.1 Installation Instructions for Release 1.9.7 and later

For the ModelBus server setup, there is at least one single environment variable
MODELBUS_ROOT needed. This variable has to point to the location the contents of the
downloaded archive have been extracted to (see).

r 1
Umgebungsvariablen S @

Benutzervariablen fiir local_men
Variable Wert
TEMP YLUSERPROFILES:\AppDataLocal{Temp
TMP %USERPROFILE%:\AppData \Local iTemp

[new. IBegrbeiten... J I Léschen
Systemvariablen ~ = .
Systemvariable bearbeiten I&

Variable Wert
M2_HOME C:\Program Filg

MODELBUS_ROGT C:\developmen Mame der Variablen: MODELBUS _ROCT

NUMEER_OF P... 4

Wert der Variablen: C:\ModelBus'server
s Windows_NT - ™ s

Neu... | OK | I Abbrechen

L))

Figure 4 ModelBus Root System variable
16

http://www.modelbus.org/en/modelbusdownloads.html

™ MODELBUS
ModelBus User Guide

The server is configured to look for a configuration model named “modelbus.config” in the
serverConfiguration folder within the installation folder. This model contains the basic
configuration needed to run the ModelBus server. As default, the model for releases prior to
1.9.9 is defined as follows:

The configuration model for releases 1.9.9 or later is defined as follows:

The content of the configuration model is initially made up of three different locations:
repositoryLocation, notificationLocation and svnRepositoryLocation. The repositoryLocation
contains the URL where the repository server will be running at (e.g.
http://0.0.0.0:8080/modelbusrepository) (see). “0.0.0.0:8080” must be replaced by the real

host and port the server should run on.

17

http://0.0.0.0:8080/modelbusrepository

MODELBUS
ModelBus User Guide

A By specifying 0.0.0.0 as host, the ModelBus server will be bound to both, the internal
interface (localhost) and the corresponding external interface. If you do not want the
server to be available externally, you should replace 0.0.0.0 by localhost.

Please make sure that you do not add a query string (e.g. “?wsdl”) to the repository
location.

The second location in the configuration model, notificationLocation, defines the URL for the
ModelBus notification service (e.g. tcp://localhost:61616) which is needed to run the
ModelBus server. In most situations, it might be not necessary to change the value of this
location.

A Please mind the “tcp://” in the notification address.

The value of the configuration option svnRepositoryLocation defines the location where the
ModelBus repository content should be stored. This can be either a path in the servers local
file system (e.g. \repository) or an URL pointing to an external Subversion repository.

Local SVN Repository

In case of local repository storage, ModelBus expects a path in the server’s file system as
value for the configuration option svnRepositoryLocation. You can specify either a path
relative to the ModelBus installation folder (e.g. \repository) or an absolute path (e.g.
C:\ModelBus\repository).

A Please note: ModelBus installation directory and ModelBus Repository directory have
to be different. ModelBus Repository directory shall be empty before starting the
ModelBus server the first time.

(Optional) Create the directory defined as the svnRepositoryLocation location, e.g.
\repository. This folder needs to be empty. The ModelBus server will create the initial data

18

MODELBUS
ModelBus User Guide

structure within that directory. When you do not create the folder, the ModelBus server will
create it automatically on startup.

External SVN Repository

The ModelBus server can also be bound to an external Subversion repository by specifying an
URL pointing to the repository location. ModelBus is able to connect to repositories
accessible via the Subversion protocol (e.g. svn://localhost/modelbus) or via the WebDAV
protocol (e.g. https://localhost/modelbus). In case of using an external repository, the
svnRepositoryLocation configuration option needs to be extended with the credentials the
ModelBus server should use to connect to the repository. This should be done by using two
additional location properties providing the Subversion user and password:

<?xml version="1.0" encoding="UTF-8"?>
<config:ConfigModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:config="http://www.modelbus.org/system/model/config.ecore">
(...)
<locations name="svnRepositoryLocation"
location="svn://localhost/modelbus/">
<properties name="SVNUserName" value="ModelBus"/>
<properties name="SVNPassword" value="yourpassword"/>
</locations>
</config:ConfigModel>

Or for ModelBus releases 1.9.9 or higher:

<?xml version="1.0" encoding="UTF-8"?>
<config:ConfigModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:config="http://www.modelbus.org/system/model/config.ecore">

(...)

<location name="svnRepositoryLocation"
location="svn://localhost/modelbus/">

<property name="SVNUserName" value="ModelBus"/>

<property name="SVNPassword" value="yourpassword"/>

</location>
</config:ConfigModel>

A Please note: The Subversion user specified in the configuration model is required for
connecting the ModelBus server to the external Subversion repository. For user-
related transactions on the repository via ModelBus, a user with the same credentials

19

MODELBUS
ModelBus User Guide

as used for the ModelBus session needs to be added to the Subversion repository.

Sample Configuration for Local Storage

The following is a summary of sample values for the ModelBus locations mentioned above:

System variable Value

repositoryLocation http://0.0.0.0:8080/modelbusrepository
notificationLocation tcp://localhost:61616
svnRepositoryLocation \repository

A Since ModelBus version 1.9.7, the ModelBus server can be run using https protocol.
Please see section 4 Setting up ModelBus for Encrypted Communication (HTTPS) for
more detailed information for the setup.

Now, if the server should operate on a SVN repository, we need to add the additional
software for the SVN support and thus add the SVNKit binaries compatible to Subversion 1.7
or higher to the ModelBus server installation. Therefore, please download the SVNKit Eclipse
Update Site Archive version 1.7.5-v1 or higher using the link on the ModelBus Website:
http://www.svnkit.com/org.tmatesoft.svn 1.7.5-vl.eclipse.zip. Unpack it to your most

favorite temporary location and move the bundles contained in the extracted plugins folder
to the \bin\plugins folder of your ModelBus server installation.

To be able to run the ModelBus Server you need to have a Java 6 SDK installed, which you
can download at http://java.sun.com/javase/downloads/index.jsp, e.g. jdk-6uxx-windows-
i586.exe for the 32 bit server or jdk-6uxx-windows-x64.exe for the 64 bit server.

Local Git Repository

As of server release 1.9.8, the ModelBus server is also able to store data in a local Git
repository. The configuration option gitRepositoryLocation has to be used to specify the
location of the Git repository. You can either specify a path relative to the ModelBus
installation folder (e.g. \gitrepository) or an absolute path (e.g. C:\ModelBus\repository). In
addition, the credentials the server should use to access the repository, i.e. a username and
an email address, have to be specified as a set of properties of the location:

20

MODELBUS
ModelBus User Guide

<?xml version="1.0" encoding="UTF-8"?>
<config:ConfigModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:config="http://www.modelbus.org/system/model/config.ecore">
(...)
<locations name="gitRepositoryLocation" location="\gitrepository">
<properties name="GitUserName" value="ModelBus"/>
<properties name="GitUserEmail" value="server@somehost.com"/>
</locations>
</config:ConfigModel>

For ModelBus releases 1.9.9 or higher, the configuration model should look like:

<?xml version="1.0" encoding="UTF-8"?>
<config:ConfigModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:config="http://www.modelbus.org/system/model/config.ecore">
(...)
<location name="gitRepositoryLocation" location="\gitrepository">
<property name="GitUserName" value="ModelBus"/>
<property name="GitUserEmail" value="server@somehost.com"/>
</location>
</config:ConfigModel>

A Please note: It is only possible to use a single repository at runtime. If more than one
repository location is set (i.e. one location for SVN and another one for Git), the
ModelBus server will use the first one specified in the configuration model and ignore
the other.

3.1.2 Installation Instructions for Older Releases

Create a directory where you want the ModelBus repository content to be stored, e.g.
C:\ModelBus\ModelBusRepository. This folder needs to be empty. The ModelBus server will
create the initial data structure within that directory. You must create a new system variable
MODELBUS _SVN_REPOSITORY _LOCATION pointing to that location (see Figure 5).

A Please note: ModelBus installation directory and ModelBus Repository directory have
to be different. ModelBus Repository directory shall be empty before starting the
ModelBus server the first time.

21

™ MODELBUS
ModelBus User Guide

- -
Umgebungsvariablen *— - ﬁ

Benutzervariablen fir local_men

Variable Wert
TEMP %USERPROFILE%\AppData\Local{Temp
T™P %LUSERPROFILES:\AppData'Local {Temp
Meu...] [Begrbeihen...] [Léschen]
) g —
Systemvariablen Systemvariable bearbeiten & u
Variable Wert

MODELBUS_REP... http:/flocalhod
MODELBUS_ROOT C:'developme:
MODELBUS_SVM... C:\ModelBus'y|
MUMBER_OF_P... 4

Mame der Variablen: MODELBUS_SVN_REPOSITORY _LOCATION

Wert der Variablen: C:'\ModelBus repository|

[OK J [Abbrechen

] [Abbrechen]

Figure 5 ModelBus SVN Repository Location System Variable

An additional environment variable MODELBUS_REPOSITORY LOCATION is needed that
contains the URL where the repository server will be running (e.g.

http://localhost:8080/modelbusrepository) (see Figure 6). “localhost:8080” must be replaced
by the real host and port it is running on.

A Please make sure that you do not add a query string (e.g. “?wsdl”) to the repository
location.

7 ——
Systemvariable bearbeiten ‘ u

Mame der Variablen: MODELBUS_REPOSITORY_LOCATION

Wert der Variablen: tp:/ localhost:8080/modelbusrepositor

[OK] [Abbrechen]

Figure 6 MODELBUS_REPOSITORY_LOCATION Variable

The variable MODELBUS NOTIFICATION_LOCATION with the URL for the notification service
(e.g. tep://localhost:61616) (see Figure 7) is needed to use the notification service.

A Please mind the “tcp://” in the notification address.

22

MODELBUS
ModelBus User Guide

Systemvariable bearbeiten @

Mame der Variablen: MODELBUS_NOTIFICATION_LOCATION

Wert der Variablen: tepe/flocalhost:6 1618

[K l | Abbrechen |

Figure 7 MODELBUS_NOTIFICATION_LOCATION Variable

The following is a summary of sample values for the system variable mentioned above:

System variable Value
MODELBUS_SVN_REPOSITORY_LOCATION C:\ModelBus\repository
MODELBUS_REPOSITORY_LOCATION http://localhost:8080/modelbusrepository
MODELBUS_NOTIFICATION_LOCATION tcp://localhost:61616

Now we need to add the additional software for the SVN support. Download the SVNKkit
using the link on the ModelBus Website “1.3.4” which links to the version needed:
http://www.svnkit.com/org.tmatesoft.svn _1.3.4.standalone.zip (at least

http://www.svnkit.com/org.tmatesoft.svn _1.3.2.standalone.zip). Unpack it to your most

favorite temporary location.

o

Move the following files to “...\ModelBusServer\lib” (the lib directory of your pre-bundled

Server):

e svnkit-javahl.jar
e svnkit.jar

e trilead.jar

® jna.jar

The rest of the SVNKit is not needed any longer so that you can throw it away.
To be able to run the ModelBus Server you need to have a Java 6 SDK installed, which you

can download at http://java.sun.com/javase/downloads/index.jsp, e.g. jdk-6uxx-windows-
i586.exe for the 32 bit server or jdk-6uxx-windows-x64.exe for the 64 bit server.

3.2 Start and Shutdown of ModelBus Server

Now you can make the ModelBus and its repository available by starting the ModelBus
Server. You should use startModelBusServer.exe executable in the server installation folder
(see Figure 5 and Figure 6).

23

m MODELBUS

ModelBus User Guide

A Please do not use “_service.exe” in the bin folder to start the ModelBus Server. In
this case the server would not start properly. In addition, there would be no

console available indicating problems on startup.

|

bin repository serverConfigurati startModelBusSer
on Ver.exe

(H«:-

Figure 5 Use startModelBusServer.exe to start the Server

C:\developmenthserverl 97bin'_service.exe - - | (B
- _ — -

osgi> log4j:WARN Mo appenders could bhe found for logger <org.springframework.osg
i.extender.internal.activator.ContextLoaderListener>.

log4j:WARN Flease initialize the log4j system properly.

Loading Intent map from [classpath:/0S8GI-INF/cxf/intents/intent—-map.xml]l
application context: OsgiBundleXmlApplicationGontext<(hundle=org.modelbus.cxf.dos
gi,. config=classpath:/08GI-INF/cxf/intents/intent—-map.xml>: startup date [Tue De

c B6 14:45:43 CET 28111; root of context hierarchy

p.ScapBindingConf iguration@14d652d,. HITP=PROUVIDEDX

http:-/-18.147.66.157:88868 mode lbusrep tory
Created MBeanServer with ID: 7fb1B898:13413%f7d20:-800A:TP-T518-—men:1

ruice

wice,. target service at: http://8.8.8_0:8080mode lbusrepository
Modelbus JMS broker started at: tcp:s~localhost:61616

retrieved intent map: IntentMap: {addressing=org.apache.cxf.ws.policy.WEPolicyFe
ature@lhaad?e,. logging=org.apache.cxf _feature.LoggingFeaturel4Bd611,. SOAFP=org.ap
lache .cxf .binding.zoap.8capBindingConf igurationPab3i2be,. SOAP.1_1=org.apache .cxf . b
inding.soap-SocapBindingConf igurationfab3iZbe, S0AP.1_Z=org.apache.cxf .binding.zo0a]

Service org.modelbus.dosgi.reposito ruice . RepozitoryServicelmpl s=tarted at:

Starting service consumer: org.modelbus.dosgi.repository.descriptor.RepositorySe

Bervice consumer started: org.modelbus.dosgi.repository.descriptor.RepositorySer

Figure 6 Server Console Window

In order to shutdown ModelBus server release version 1.9.6. or lower, just close the server’s
console window. As of ModelBus server release 1.9.7, it is recommended to type “exit” in the

server’s console window and to confirm the shutdown question.

If you plan to handle large models it could be necessary to increase the Java heap space size
for the server. Therefore you have to edit the startup.bat file in the bin folder and insert an
additional parameter. The example shown sets the heap space to 1024MB which also is the
default value (Figure 7). With the 64 bit ModelBus server version you can only increase the

heap space to ~1.5 GB.

24

MODELBUS
ModelBus User Guide

r g
|| startup.bat - Editor - ‘ ‘ -

Datei Bearbeiten Format Ansicht 7

58t MODELBUS_LIB=%-dp0l1ib

rem set MODELBUS_LIB=¥MODELBUS_ROOT%/bin/1ib

start _service -console -consolelog -clean -vmargs -classpath=./1ib -xmx1024m -Djava.util.logging. config.file=/META-INF/logging.properties
rem start bin/_service -console -consolelog -clean -vmargs -classpath=./1ib -xmx1024m

rem -xrunjdwp:transport=dt_socket,server=y,address=9191,suspend=y -Xdebug

-

4 b

Figure 7 Increase Java Heap Space on the Server

You can quickly check whether the server is running using a web browser and invoking URL
that you stated in the repositorylocation configuration option augmented with the query
string “?wsdl” e.g. http://localhost:8080/modelbusrepository?wsdl. The result should be a
listing of the RepositoryService wsdl.

3.3 Installing ModelBus on a Linux (Ubuntu 12.04) Desktop

We are going to install ModelBus in the home directory. Therefore create a folder Modelbus
there and two folders in it as shown in Figure 8.

Modelbus

Devices « [F® Home Modelbus ¢ Q, search
(=) VBOXA... &

Computer i i

il Home MBClient MBServer
K Desktop

il Documents

&4 Downloads

i Music

= Pictures

I videos

~ File System

& Trash
Network

izl Browse Net...

Figure 8 ModelBus installation location

Within this example we will install a server and a client based on the Eclipse Juno release.

You can also use a Juno based client with an Indigo based server and vice versa. A 32 bit
client can also be used with a 64 bit server and vice versa, or a windows client with a Linux
based server etc. The only thing you have to keep in mind is that an appropriate java (32/64
bit) has to be installed.

3.3.1 Installing the Server

In the example we use a 32 bit Juno based server on the 32 bit Ubuntu 12.04 Desktop
system.

25

MODELBUS

ModelBus User Guide

First we have to install a Java JDK. We use the openjdk delivered with Ubuntu but we have to

install it, e.g. using the Synaptic Package Manager (see Figure 9).

Places System '2)

Preferences v

Administration B =g Additional Drivers

Help and Support & Computer Janitor

About GNOME B8 pisk utility

About Ubuntu % Language Support

m Log File Viewer File Edit Package
% LoginScreen
) Network Tools Reload

B
Printin
L] 9 All

Amateur Radio (universe)
Communication

3
[3) system Monitor Communication (multivers

m System Testing
5"_] Time and Date

Communication (universe)
Cross Platform

Cross Platform (multiverse
Cross Platform (universe)
Databases

Databases (universe)
Debug

Debug (multiverse)

Debug (universe)
Development

¥ update Manager
g Users and Groups

&7 Documents

Development (multiverse)
Development (universe)
Documentation
Documentation (multivers:
Documentation (universe)
Editors

Editors (multiverse)
Editors (universe)
Electronics (multiverse)

Settings

Mark All Upgrades

Synaptic Package Manager

Help

Properties
S Package Installed Version Latest Version Descr
UJ openigtlink-examples 1.0.0~svn6270-1 Open
)@ openipmi 2.0.18-0ubuntul Intelli
) ® openjade 1.4devel1-19build1 Imple

[openjade1.3
) @ openjdk-6-dbg
[® openjdk-6-demo
) @ openjdk-6-doc
® openjdk-6dk
® openjdk-6-jre
B ® openjdk-6jre-headless
B ® openjdk-6jre-lib

) it A NA A R i

1.3.2-10 Imple
6b20-1.9-0ubuntut Javar
6b20-1.9-0ubuntut Javar
6b20-1.9-0ubuntu1 Open
6b20-1.9-0ubuntu1 6b20-1.9-Oubuntut1 Open
6b20-1.9-0ubuntu1 6b20-1.9-0ubuntut Open
6b20-1.9-0ubuntut 6b20-1.9-Oubuntul Open
6b20-1.9-0ubuntu1 6b20-1.9-0ubuntul Open

OpenJDK Development Kit (JDK)
Get Screenshot

OpenJDK is a development environment For building applications,
applets, and components using the Java programming language.

The packages are built using the IcedTea build support and patches
from the IcedTea project.

Figure 9 Install OpenJDK

Retrieve the Linux 32 bit
http://www.modelbus.org/en/modelbusdownloads.html. Save the file in the Downloads

(Juno)

version from

the current release page at

folder.

Similarly retrieve the SVN kit to be used later from

http://www.svnkit.com/org.tmatesoft.svn 1.7.11.eclipse.zip.

Unpack the Juno based ModelBus Server downloaded to the MBServer directory (see Figure

8) using the Archive manager (see Figure 10).

Similarly extract the SVN jars needed from the org.tmatesoft.svn_1.7.11.eclipse.zip archive

(see Figure 11) to the plugins directory of the Modelbus Server installation.

26

http://www.modelbus.org/en/modelbusdownloads.html

MODELBUS

ModelBus User Guide

Archive Manager

Devices NN Qe

VBOXA...

Computer

i Home
& Desktop
i Documents

org.tmatesoft.svn_ eclipse-modeling- build.teamprovider-
1.7.11eclipsezip juno-SR2dinux-gtk. 1.9.8.20130929210
tar.gz 8.2ip

& Music

i Pictures

i kieas € Location:

= File System

Brash Name v Size Type Date Modified

- ™ ModelBusServer-Version1.9.8 94.2MB Folder 01 October 201
Network

+ aifokus | Modelbus| Create Folder
Places Name v Size Modified
Q search i MBClient 10:23
® recentyvsed
s fokus

“modelbus-1.9.8-sery K Desktop

X File system

s

Extract Actions
Allfiles Recreate folders
1object (94.2MB) 10| @ selected files Overwrite existing files b
Files: Do not extract older files
Help cancel | (|iExtract

Figure 10 Start Archive Manager

Archive Manager

Devices e Downloads
OVBOXA... &

Computer | =
M Home modelbus-1.9.8- [IFEETTEIET
& Desktop server-juno-linux- 1.7.11.eclipse.zip
32bitull-2013101-

i Documents.

1855.zip Location: | i /plugins/
Type Date Modified

% com.trilead.ssh2_1.0.0.build2...). Java archive

i Music

@ Pictures
@ Videos 5 net java.devjna_3.4.0.t20120... 1. Java archive
= File System % org.tmatesoft.sqljet_1.1.8.r1... X Java archive
B Trash 5 . Java archive

8 Browse Net... —
#| |+ MBServer ModelBusServer-Version1.9.8 bin [yluglm Create Folder
Places Name + size Modified
Q search i org.apache.ant_1.8.4.v201303080030 10/01/2013
@ Recently Used i org.eclipse.core.runtime.compatibility.regist... 10/01/2013
& fokus i org.eclipse.equinox.launcher. gtk.linux.x86_1 10/01/2013
& Desktop i org.junit_4.11.0.v201303080030 10/01/2013
[File system] gle.qu: 3)29/ 1

“org.tmatesoft.svn_1.7.11.eclipse.zip" selected (6
1

£ -
Extract Actions
All files ¥ Re<create folders
@ Selected files (& Overwrite existing files
Files: Do ot extract older files

I

Help

Figure 11 Extract the SVN kit jars

Next we have to define the environment variable needed. We do this in the “.profile” for the
current user. This will be executed every time the user logs in. The .profile file will only be
visible after toggling the “Show Hidden Files” (see Figure 12).

27

™ MODELBUS
ModelBus User Guide

Home F File Edit View Go Bc arks Help

Devices

(5) VBOXA... &

e e et
.
-pulse .subversion
E Desktop
™ Documents a 5
(@
i Downloads L)
" Examples .bash_histor
il Music P - ¥
m Pictures [Desk ;i:i
. Sessi file
i@ videos file
5 File System .dmrc .gtk-bookmarks
& Trash HEE =
exi
Network # see
.profile .profile~
=i Browse Net...
prEE) 1455
.vboxclient-display. .vboxclient-
pid draganddrop.pid
Openk ~
LibGL
LibGL
OoenG
xsession-errors .xsession-errors.old

Figure 12 Making .profile visible

Open .profile in the editor and add the following lines at its end:

export MODELBUS ROOT=<Path to Modelbus Server Folder>

The MODELBUS _ROOT variable should point to the directory where the Modelbus Server has
been installed to.

The result is shown in Figure 13.

| *.profile %

~/.profile: executed by the command interpreter for login shells.

This file is not read by bash(1), if ~/.bash_profile or ~/.bash_login
exists.

see fusr/share/doc/bash/examples/startup-files for examples.

the files are located in the bash-doc package.

the default umask is set in fetc/profile; for setting the umask
for ssh logins, install and configure the libpam-umask package.
#umask @22

if running bash
if [-n "$BASH_VERSION"]; then
include .bashrc if it exists
if [-f "SHOME/.bashrc"]; then
. "SHOME/.bashrc"
fi
fi

set PATH so it includes user's private bin if it exists
if [-d "SHOME/bin"] ; then

PATH="SHOME /bin:SPATH"
fi

export MODELBUS_ROOT=/home/fokus/ModelBusServer-Version1.9.8

Figure 13 .profile of the current user

28

™ MODELBUS
ModelBus User Guide

If you want to configure the server location, the notification service location and the location
of the repository, you have to adjust the modelbus.config file in the serverConfiguration
folder (see Figure 14). However, for our example installation we don’t change anything.

Text Editor

@

Devices

elBusServer-Version1.9.8 serverConfiguration

() VBOXA... &

Computer /
a S
s st

K Desktop

i @]

i} Documents modelbus.config (~/Modelbus/MBServer/ModelBusServer-Version1.9.8/serverConfiguration) - gedit

[Tl .* P Open ~ & sae |g| Undo

i Music
[Pictures -] modelbus.config %
i@ videos <?xml version="1.0" encoding="UTF-8"?>

<config:ConfigModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:config="http://www.modelbus.org/
< File System system/model/config.ecore”>
2 Trash <locations name="repositorylLocation” location="http://0.0.0.0:8080/modelbusrepository"”/>

<l-- <locations name="secureRepositorylLocation" location="https://0.0.0.0:8181/modelbusrepository">

Network <properties name="SSLTrustStore" value="SSL\cacerts.jks"/>
= Browse Net... <properties name="SSLTrustStorePassword” value="CHANGEME"/>

<properties name="SSLKeyStore" wvalue="5SL\modelbus.keystore"/>
<properties name="SSLKeyStorePassword" value="CHANGEME"/>
<properties name="SSLAlgorithm" value="RSA"/>
<properties name="SSLPassword” value="CHANGEME" />
</locations> [/-->
<locations name="notificationLocation” location="tcp://localhost:61616"/>
<locations name="svnRepositorylLocation" location="repository"/>
<!--<locations name="gitRepositorylLocation” location="\gitrepository">
<properties name="GitUserName" value="CHANGEME" />
<properties name="GitUsertmail"” value="CHANGEME"/>
</locations>--> h
</config:ConfigModel>

NREEEE

XML ~ Tabwidth: 8 ~ Ln 13, Col 53 INS

Figure 14 modelbus.config

Please note that the configuration meta model has changed slightly with the release 1.9.9.
See chapter 3.1.1 for details.

Finally, we have to make the “startup.sh” and the “modelbus” file in the Modelbus Server
executable (see Figure 15 and Figure 16).

Devices

P Home Modelbus MBServer ModelBusServer-Version1.9.8 € Q search

(G VBOXA... A

Computer ol -] -] -]

sl Home bin repository serverConfiguration workspace
& Desktop

Il Documents

i3 Downloads m

& Music Basic | Permissions | OpenWith

startup.sh Properties

@ Pictures
2 Owner: Fokus - Fokus|
i@ videos
File System Access: Read and write -
8 Trash
Network Group: fokus -

el Eiat=c L8 Access: Read-only v
Others
Access: Read-only v
Execute: @ Allow executing file as program

Last changed: unknown

Help Close

29

™ MODELBUS
ModelBus User Guide

Figure 15 Set startup.sh executable

Home Folder

®

’ VBOXA... &
) computer ‘ ' it
| "‘ s, configuration plugins eclipse.ini [modelbus |
] = Desktop .
j @Documents LrC © modelbus Properties
i Music Basic Permissions Open With
@ Pictures -
=) | owner: RIS
L i i@ Videos
n File System Access: Read and write -
‘ @ Trash
= Natwork Group: fokus -
lisi Browse Net... Access: Read-only v
Others
Access: Read-only N
Execute @ Allow executing file as program

Lastchanged: Wed 02 Oct 2013 08:59:41 AM CEST
"modelbus” selected (65.1

Help close

o ODECINE

Figure 16 Set modelbus executable

Now we can start the ModelBus server by double click on startup.sh and selecting “Run in
Terminal” (Figure 17).

Home Folder

Devices « @ Home Modelbus MBServer ModelBusServer-Version1.9.8 € Q search

e - o o

repository serverConfiguration workspace

Computer
il Home
K Desktop

AW e

i) Documents
| Downloads
i Music

I videos

DD

X Do you want to run "startup.sh”, or display its contents?
[1 = File System
£ Trash "startup.sh" is an executable text file.
Network . h 5 ey
w | Runinerminal | | Display | { Cancel J | Run |
=l Browse Net i
"startup.sh" selected (1.5 kB)

Figure 17 Run startup.sh

This will result in a terminal as shown in Figure 18.

30

MODELBUS
ModelBus User Guide

™ Fokus@ubuntu-32bit: ~/Modelbus/MBServer/ModelBusServer-Version1.9.8
fokus@ubuntu-32bit:~/Modelbus/MBServer/ModelBusServer-Versionl.9.8% sh startup.s

: Failed to load class "org.slf4j.impl.StaticlLoggerBinder".
Defaulting to no-operation (NOP) logger implementation
See http://www.slf4j.org/codes.html#StaticLoggerBinder for further detail

Failed to load class "org.slf4j.impl.StaticMDCBinder".
Defaulting to no-operation MDCAdapter implementation.
See http://www.slf4j.org/codes.html#no_static_mdc_binder for further deta

Modelbus IMS broker started at: tcp://localhost:61616

HttpService using port: 8080

Loading Intent map from [classpath:/0SGI-INF/cxf/intents/intent-map.xml]
application context: OsgiBundleXmlApplicationContext(bundle=org.modelbus.cxf.dos

ache.cxf.binding.soap.SoapBindingConfiguration@ib48e96, SOAP.1_1=org.apache.cxf.
binding.soap.SoapBindingConfiguration@lb48e96, SOAP.1_2=org.apache.cxf.binding.s
oap.SoapBindingConfiguration@fd2c2a, HTTP=PROVIDED}

Starting service consumer: org.modelbus.dosgi.repository.descriptor.Repositoryse
rvice

2013-11-04 10:42:57.646:INFO:oejs.Server: jetty-8.1.10.v20130312

2013-11-04 10:42:57.829:INFO:oejs.AbstractConnector:Started SelectChannelConnect
or@e.0.0.0:8080

Service consumer started: org.modelbus.dosgi.repository.descriptor.RepositorySer
vice, target service at: http://0.0.0.0:8088/modelbusrepository

Service org.modelbus.dosgi.repository.service.RepositoryServiceImpl started at:
http://127.0.1.1:8080/modelbusrepository

ModelBus is up and running

Registering HTTP-Proxy servlet at /

Registering REST servlet at /modelbusrepository-rest

ModelBus Manager is starting...

osgi> I

Figure 18 ModelBus server started

Accessibility of the Modelbus server can be checked using a browser and invoking the
location specified in the repositoryLocation property in the modelbus.config file (see Figure
14) concatenated with the string "?wsdl”. This will result in displaying the ModelBus
Repository WSDL as shown in Figure 19.

31

MODELBUS
ModelBus User Guide

[Chteptocatnos.._eposirorywsdl

\';3 localhost h

This XML file does not appear to have any style information associated with it. The document tree is shown below.

—<wsdl:definitions name="RepositoryServiceService" targetNamespace="http://www.modelbus.org/Repository/">
—<wsdl:types>

—<xs:schema targetNamespace="http://www.w3.0rg/2005/05/xmlmime" version="1.0">

<xs:attribute name="contentType" type="xs:string"/>
</xs:schema>

—<xs:schema attributeFormDefault="unqualified" elementFormDefault="unqualified" targetNamespace="http://www.modelbus.org/Repository/'>
<xs:import namespace="http://www.w3.0rg/2005/05/xmlmime"/>
<xs:import namespace="http://www.w3.0org/2005/05/xmlmime"/>
<xs:element name="ConstraintViolationException" type="tns:RepositoryException"/>
<xs:element name="InvalidRevisionException" type="tns:RepositoryException"/>
<xs:element name="InvalidServiceDescriptionException" type="ts:RepositoryException"/>
<xs:element name="InvalidValueException" type="tns:RepositoryException"/>
<xs:element name="LockedException" type="tns:RepositoryException"/>
<xs:element name="NonExistingResourceException" type="tns:RepositoryException"/>
<xs:element name="RepositoryAuthentificationException" type="tns:RepositoryException"/>
<xs:element name="RepositoryRuntimeException" type="tns:RepositoryException"/>
<xs:element name="UnresolvedReferencesException" type="tns:RepositoryException"/>
<xs:element name="authenticate" nillable="true" type="xs:anyType"/>
<xs:element name="authenticateResponse" nillable="true" type="xs:anyType"/>
<xs:element name="checkInFile" nillable="true" type="xs:anyType"/>
<xs:element name="checkInFileResponse" nillable="true" type="xs:anyType"/>
<xs:element name="checkInModel" nillable="true" type="xs:anyType"/>
<xs:element name="checkInModelResponse" nillable="true" type="xs:anyType"/>
<xs:element name="checkOutFile" nillable="true" type="xs:anyType"/>
<xs:element name="checkOutFileResponse" nillable="true" type="xs:anyType"/>
<xs:element name="checkOutModel" nillable="true" type="xs:anyType"/>
<xs:element name="checkOutModelResponse" nillable="true" type="xs:anyType'/>
<xs:element name="checkOutModelWithRevision" nillable="true" type="xs:anyType"/>
<xs:element name="checkOutModelWithRevisionResponse" nillable="true" type="xs:anyType"/>
<xs:element name="checkPath" nillable="true" type="xs:anyType"/>
<xs:element name="checkPathResponse" nillable="true" type="xs:anyType"/>
<xs:element name="commit" nillable="true" type="xs:anyType"/>
<xs:element name="commitChangeModel" nillable="true" type="xs:anyType"/>
<xs:element name="commitChangeModelResponse" nillable="true" type="xs:anyType"/>
<xs:element name="commitResponse" nillable="true" type="xs:anyType"/>
<xs:element name="control" nillable="true" type="xs:anyType"/>
<xs:element name="controlResponse" nillable="true" type="xs:anyType"/>
<xs:element name="copy" nillable="true" type="xs:anyType"/>

Figure 19 Invoking the ModelBus Repository WSDL

3.3.2 Installing the Client
Within this section we will describe how to install the ModelBus Team Provider client based
on the Juno modeling release.

First we need the eclipse Juno modeling version for 32 bit Linux as a base to install the
ModelBus client. You can download it from:

http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release

/juno/SR2/eclipse-modeling-juno-SR2-linux-gtk.tar.gz

Unpack it using the Archive Manager to the MBClient directory (similar to the action shown
in Figure 10 and Figure 11).

Open the folder eclipse and start the eclipse file contained in there (Figure 20).

32

™ MODELBUS
ModelBus User Guide

Home Folder

MBClient

Devices

P® Home Modelbus MBClient Q search

i # ©veoxa.. &
| g
i] Computer i i i I
¥ sl Home about_files configuration dropins features
K& Desktop

E
L
E

&3 Downloads

i} Documents i
p2

plugins readme workspace
i Music
<1D0€ star
@] Pictures s / Py
Videos — . o3 sluai
. » a about.html artifacts.xml eclipse | eclipse.ini
‘ 1 L File System
-
\») SIeh <1006 <!D0E
i 9 Network ital <bial
w Br « B
izl Browse Net.... epl-v10.html icon.xpm libcairo-swt.so notice.html

Figure 20 Eclipse client

From now on the installation is identical to the Windows based client installation described

in this guide and you can follow the description there. To start the client afterwards you only
need to start Eclipse you installed it in.

Finally, you will be able to use the Eclipse ModelBus Client (Figure 21) in the same way as the
client in the Windows environment and you can follow the descriptions there.

ModelBus Repository Exploring - Eclipse

File Edit MNavigate Search Project Run Window Help

Ciw Q- | & &~ = |@ModelBu...| &' Java

|| ModelBus Repository £2 =a

=0
$ B G
¥ = www.modelbus.org 4
¥ [= system 4
¥ = model 4

& ModelBus.user 4
¥ [E] user.ecore 2

v # user

+ B UserModel

» B User -> RuleElement, Nan
* g UserGroup -> NamedElen
» H NamedElement

* B Rule

» B RuleElement

[ModelBus Reposito | & History = ModelBus Propertie | = ModelBus Status vi &2 ™. [Problems| = O

Startup time: Oct 19, 2010 1:39:41 AM
Repository service location: http://localhost:8191/modelbusrepository
Registered ModelBus services:

Name Location Startup

i @

Figure 21 The ModelBus Client

33

MUDELBUS ModelBus User Guide

34

MODELBUS
ModelBus User Guide Eﬂ

4. Setting up ModelBus for Encrypted Communication (HTTPS)

As of release 1.9.7, ModelBus supports encrypted communication using HTTPS. An HTTPS
connector can be setup in parallel to the HTTP connector or standalone.

If you are not familiar with SSL, see http://docs.oracle.com/javase/1.5.0/docs/tooldocs/

windows/keytool.htm| for some detailed information about the terms and concepts in

context of SSL and its implementation in Java.

4.1 SSL Configuration in ModelBus Configuration Model

The configuration options needed to setup a HTTPS connection to the ModelBus server has
to be provided through the ModelBus configuration model modelbus.config introduced in
chapter 3.1.1 by using the secureRepositoryLocation location. The following excerpt of the
configuration model shows the relevant fragment to configure the HTTPS connection:

<?xml version="1.0" encoding="UTF-8"?>
<config:ConfigModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:config="http://www.modelbus.org/system/model/config.ecore">
(...)
<locations name="secureRepositoryLocation"
location="https://0.0.0.0:8181/modelbusrepository">
<properties name="SSLTrustStore" value="SSL\cacerts.jks"/>
<properties name="SSLTrustStorePassword" value="yourpassword"/>
<properties name="SSILKeyStore" value="SSL\modelbus.keystore"/>
<properties name="SSLKeyStorePassword" value="yourpassword"/>
<properties name="SSLAlgorithm" value="RSA"/>
<properties name="SSLPassword" value="yourpassword"/>
</locations>
(«..)
</config:ConfigModel>

For ModelBus releases 1.9.9 or higher, the configuration model looks slightly different:

<?xml version="1.0" encoding="UTF-8"?>
<config:ConfigModel xmi:version="2.0" xmlns:xmi="http://www.omg.orqg/XMI"
xmlns:config="http://www.modelbus.org/system/model/config.ecore">
(...)
<location name="secureRepositoryLocation"
location="https://0.0.0.0:8181/modelbusrepository">
<property name="SSLTrustStore" value="SSL\cacerts.jks"/>
<property name="SSLTrustStorePassword" value="yourpassword"/>
<property name="SSLKeyStore" value="SSL\modelbus.keystore"/>
<property name="SSLKeyStorePassword" value="yourpassword"/>
<property name="SSLAlgorithm" value="RSA"/>
<property name="SSLPassword" value="yourpassword"/>

35

http://docs.oracle.com/javase/1.5.0/docs/tooldocs/%20windows/keytool.html
http://docs.oracle.com/javase/1.5.0/docs/tooldocs/%20windows/keytool.html

MODELBUS
ModelBus User Guide

</location>

(...)
</config:ConfigModel>

Beside the HTTPS location itself (https://0.0.0.0:8181/modelbusrepository) some additional
properties have to be passed to the ModelBus server in order to configure a SSL connection
for ModelBus:

1. SSLTrustStore: The absolute or relative path (relative to the configuration folder) to
the trust store which stores trusted certificates for certificate authorities (CAs) known
to the server. If this option is not set, the default trust store shipped with the JDK will
be used instead of an own one. See the Java Docs for more detailed information
http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html#cacerts.

2. SSLTrustStorePassword: The password required to access the trust store referenced in
the SSLTrustStore property. If an own trust store is configured the password for the
JDK built-in trust store has to be used (default: changeme).

3. SSLKeyStore: The absolute or relative path (relative to the configuration folder) to the
key store containing the SSL certificate to use for the communication with the
ModelBus server.

4. SSLKeyStorePassword: The password required to access the key store referenced in
the SSLKeyStore property.

5. SSLAlgorithm: The name of the algorithm used to generate the key pairs and to sign
certificates (e.g. RSA). An overview of supported algorithms can be found at
http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html#DefaultAl
gs

6. SSLPassword: The password required to recover the private key generated for the

certificate.

In the example configuration both the key store and the trust store reside in a folder named
SSL which is a subfolder of the ModelBus configuration folder. Both files are not initially
included in the ModelBus configuration and have to be created as explained in chapter 4.2.

The usage of the SSLTrustStore property is optional. If an own trust store is used, the
ModelBus server will rely on the CAs listed in the JDK built-in trust store. In this case, you
either have to import the certificate of your “own” CA to the JDK trust store - if you want to
use a self-signed certificate - or you have to use a certificate verified by a real CA whose
certificate is available in the trust store.

In order to check whether the server is running correctly using HTTPS, you can open up a web
browser and target it to the URL you have defined in the secureRepositorylLocation
36

http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html#cacerts
http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html#DefaultAlgs
http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html#DefaultAlgs

MODELBUS
ModelBus User Guide Eﬂ

configuration option. Please do not forget to add the query string “?wsdl” (e.g.
https://localhost:8181/modelbusrepository?wsdl). The result should be a listing of the
RepositoryService wsdl as indicated in chapter 3.2.

4.2 Creating ModelBus SSL Certificate

You can either use a real SSL certificate to run the ModelBus server in productive
environment or you can create a self-signed one for test purposes. This section describes
how to create a custom SSL certificate and how to ‘sign’ it using a custom CA.

Java is delivered with a key and certificate management utility called keytool which allows
users to create and manage their own keys and the certificates associated to them. keytool
stores the keys and certificates in a file called “key store” which can be understood as a
repository of certificates holding the public and private keys required for communication. In
the default implementation the key store is implemented as a file where the private keys are
protected by a password. The keytool utility can be used to import, export and list the
contents of a key store and to generate self-signed certificates for test purposes. For detailed
information about the keytool utility see
http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html.

In order to create a certificate for the ModelBus server, the following steps have to be
performed:

1. Create two folders, e.g. C:\keytools and C:\keytools\keys and change to folder
C:\keytools.

2. Create the key store containing the ModelBus certificate and its key pair.
With the keytool utility, this can be done in one step using the genkey option:

keytool -genkey -alias ModelBusServer -keyalg RSA -validity 365 -keystore
keys/modelbus.keystore

This will prompt for some information about the certificate’s owner needed to create
the certificate. The following fragment shows some example data for the creation of a
certificate for the R&D department of an exemplary company named
ExampleCompany.

Enter keystore password: yourpassword

What is your first and last name?
[Unknown] : www.examplecompany.com

What is the name of your organizational unit?
[Unknown]: R&D

37

http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html

MODELBUS
ModelBus User Guide

What is the name of your organization?
[Unknown] : Example Company

What is the name of your City or Locality?
[Unknown]: Berlin

What is the name of your State or Province?
[Unknown] : Berlin

What is the two-letter country code for this unit?
[Unknown] : DE

Is CN=www.examplecompany.com, OU=R&D, O=Example Company, L=Berlin,

ST=Germany, C=DE correct?
[no]: vy

Enter key password for <ModelBusServer>
(RETURN if same as keystore password) :

A Please note: If you do not use a real domain name (value for first and last name of
the certificate owner) for the certificate, please use the IP you have specified as host
for the secureRepositoryLocation instead.

As a result, a key store file containing the ModelBus private and public keys and its
wrapping certificate is created at C:\keytools\keys\modelbus.keystore.

3. Export the ModelBus certificate from the key store.
This can be done using the export option of keytool. The following command exports
the ModelBus certificate to a file named ModelBusServer.cer in the C:\keytools folder:

keytool -export -alias ModelBusServer -storepass yourpassword -file
ModelBusServer.cer —-keystore keys/modelbus.keystore

4. Signing the certificate.
If the certificate should be signed by a well-known CA, you first have to initialize a
Certificate Signing Request (CSR) and sent the generated artifact to the CA prior to
importing the certificate into a trust store. See
http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html#certreqC
md for detailed information about this procedure.

5. Import the certificate into a trust store.

38

http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html#certreqCmd
http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html#certreqCmd

MODELBUS
ModelBus User Guide

The keytool utility can be used with the import parameter to create an own trust
store and add the ModelBus server certificate to it. Therefore, the following
additional parameters should be used:

keytool -import -v -—-trustcacerts -alias ModelBusServer -file
ModelBusServer.cer -keystore cacerts.jks -keypass yourpassword —-storepass
yourpassword

After having confirmed that you trust the certificate you are about to import, a file named
cacerts.jks is created and the ModelBus certificate is imported as a trusted CA.

Both, the key store containing the certificate for the ModelBus server (modelbus.keystore)
and the trust store providing the certificate of the custom CA (cacerts.jks), have to be
provided to the ModelBus using the configuration model as described in section 4.1. In
addition, the passwords defined in this procedure have to be added to the ModelBus
configuration model.

39

MODELBUS
ModelBus User Guide

5. ModelBus Manager

5.1 Whatis ModelBus Manager?

ModelBus Manager is a web application for the administration of a ModelBus server
installation. In its current extent, it allows to browse the ModelBus repository and to manage
the user access rights to ModelBus.

5.2 How to Install ModelBus Manager?

ModelBus Manager is shipped together with some of the ModelBus Server distributions
based on Eclipse 4.2 (Juno) or higher, available on the ModelBus website. If you have
downloaded a distribution containing the ModelBus Manager, please install it as described in
section 3.

The ModelBus Manager application starts up together with the ModelBus server on the
default port 8080. If you want to change the port, please replace the port in the startup
batch file (for Windows distributions: bin_startup.exe) with a port number of your choice.

A Please note: In case of having changed the port of the ModelBus Manager, you are
required to start the ModelBus server by using the corresponding batch file for the
change to take effect.

After having started the server, the ModelBus Manager application is available as a web
application at http.//%host%:%port%/modelbus?startup=manager (e.g.
http://127.0.0.1:8080/modelbus ?startup=manager for a local installation using the default
port 8080). If access the corresponding URL with your browser, the ModelBus Manager
application starts up (see Figure 1).

40

™ MODELBUS
ModelBus User Guide

([FRrefox >

m ModelBus Manager

= @ 127.0.0.1:3080, modelbus?startup=manager c "" Google P A B~ g

Repostory _over.. ™ MODELBUS
s MANAGER

a Login E Repository WSDL

Application +

Repository

&

Notifications m

Startup time: n/a
Repository service location: n/a
Registered ModelBus services:

Name Location Startup

Q2

Figure 22 ModelBus Manager Application without any Open Session

5.3 Login to ModelBus Manager

In order to use the ModelBus Manager application, you have to authenticate with valid
ModelBus user credentials. Therefore, you can use the Login button in the application’s
toolbar or the Login view. The latter has to be added to the perspective first using the Menu
command Application > Show View > Login View.

After having successfully logged in by using valid user credentials (see section 8 for more
details), the ModelBus Manager displays the current repository content (Repository view)
and the status of the ModelBus server (“Status” view) as shown in Figure 23.

41

™ MODELBUS
ModelBus User Guide

Firefox ~

[ESSpER=SC)

[',-‘l'Goog!‘e » ‘ﬁ ﬂ' 6

% MODELBUS
i MANAGER

m ModelBus Manager

@ 127.0.0.1:83080/modelbus?startup=manager

Repository other...

Application

Repository

Qéh

= www.modelbus.org [699]
[UML_LIBRARIES [702]
= www.eclipse.org [701]

Notifications

Startup time: 02.10.2012 09:48:06

Repository service location: http://10.147.66.176:8030/modelbusrepository
Registered Mode|Bus zervices:

Name Location Startup

(M}

Figure 23 ModelBus Manager Application with Open Session

5.4 Accessing the Repository

In general, ModelBus Manager allows to browse the ModelBus repository content with read-
only access except the deletion of its artifacts. The Repository view displays the content
structure of the repository and allows to open the artifacts in a (read-only) text editor (see

Figure 24). With the revision link list at its bottom, the editor provides access to the different
revisions of an artifact.

42

ModelBus User Guide

Firefox ~

| [ModelBus Manager

Repository other...

Application

Repository
&
= www.modelbus.org [699]
[UML_LIBRARIES [702]
= www.eclipse.org [701]
= uml2 [701]

& 4.0.0 [701]

f.‘ & 127.0.0.1:3080/modelbus?startup=manager

El

ML.dependencie

Types [640]
UML [642]

sl a BB

MODELBUS
MANAGER

c ':." Google

rrl;

Logout

M[]IJELBIJS

Ecore | UML
<?xml version="1.0" encoding="ASCII"?>
<dependencies:DependenciesModel xmitversion="2.0" xmlns:xmi="http://www.omg.org/¥MI" xmIns:dependencies="http://www.maod
<incomingReferences modelUrl="http://test/2KBtest_l.uml">
<referencedTypes typeURI="http://www.eclipse.org/emf/2002/Ecore#//EClass" occurrence="6"/>
</incomingReferences=
«/dependencies: DependenciesModel=

Types

(= emf [641]

T

(= 2002 [641]
[El Ecore [641] == = e s s

Notifications

Startup time: 02.10.2012 09:48:06

Repository service location: http://10.147.66.176:8030/modelbusrepository

Registered ModelBus services:

Startup

Name Location

(M)

Figure 24 Browsing the Repository with ModelBus Manager

In addition, the Repository view offers a context menu with a set of actions like deleting
artifacts or comparing revisions of artifacts using the ModelBus Model DiffMerge tool (see

Figure 25).

43

™ MODELBUS
ModelBus User Guide

{| Firefox ~ _ S|

m ModelBus Manager

= @ 127.0.0.1:3080/modelbus?startup=manager i ['.-‘l'Goog!‘e P “ﬁ n' 6.

% MODELBUS
i MANAGER

Repository other...

(| Application

Repository Ecore |UML | Types [RUIE[WGEIETE TN

roa =%xml version="1.0" encoding="ASCII"?=
<dependencies:DependenciesModel xmi:version="2.0" xmlins:xmi="http://www.omg.org/XMI" xmins:dependencies="http://www.mt
= www.modelbus.org [699] <incomingReferences modelUrl="http://test/2KBtest_1.uml"=
<referencedTypes typeURI="http://www.eclipse.org/emf/2002/Ecore#//EClass" occurrence="6"/>
(= UML_LIBRARIES [702] <fincomingReferences=

&= www.eclipse.org [701] </dependencies:DependenciesModel>

& uml2 [701]
= 4.0.0 [701]
[Ef} UML.dependencies

Compare with Rewvision...

B o Export... 671 678 685 701
H Delete
Notifications
Startup time: 02.10.2012 09:48:06
Repository service location: http://10.147.66.176:8030/modelbusrepository
Registered ModelBus zervices:
MName Location Startup
4 i L3

(M}

Figure 25 Repository Context Menu in ModelBus Manager

5.5 Export Repository Contents

ModelBus Manager offers the functionality to export the repository content or a subset of its
artifacts of a particular revision as an archive file. Therefore, the artifacts to be included in
the exported archive have to be selected in the Repository view first. The context menu of
the Repository view provides the corresponding action “Export...” (see Figure 25) which
displays a dialog to select the revision to use for the export procedure.

44

™ MODELBUS
ModelBus User Guide

P Frefox =

mMode\Bus Manager
< & 127.0.0.1:3080/modelbus?startup=manager wvc¢ ':." Google Pl A B~ a
Reposito E <
Select any of existing revisions ELB US
New... Select a revision for the export AG ER
| Epafetn o Revision Date Author Comment
S T = S
27.09.2012 09:52:38 System Test case log message
Repository 704 27.09.2012 09:52:37 System internal update
703 27.09.2012 09:52:37 System internal initial model creation ST
b = www.mod 702 27.09.2012 09:52:36 System internal update
b = UML_LIB] 701 27.09.2012 09:52:36 Systemn internal update
4 [www.eclif | 700 27.09.2012 09:52:33 System TestCase org.modelbus.core.lib.test.baszic.BasicTests
4= umlz [| | s99 27.09.2012 09:52:33 System internal update
4 = 4.0] 693 27.09.2012 09:52:32 System internal update
| 597 27.09.2012 09:52:32 System Test caze log meszage
il | 596 27.09.2012 09:52:31 System TestCase org.modelbus.core.lib.test.basic.BasicTests
| 695 27.09.2012 09:52:30 System internal update
4 [= emf [d | 694 27.09.2012 09:52:30 System Test caze log meszage D
4 = 200 | 693 27.09.2012 09:52:29 System TestCase org.modelbus.core.lib.test.basic.BasicTests
592 27.09.2012 09:52:29 System Test delete org.modelbus.core.lib.test.basic.BasicTes
691 27.09.2012 09:52:28 System Test caze log message
6590 27.09.2012 09:52:27 System TestCase org.modelbus.core.lib.test.basic.BasicTests
639 27.09.2012 09:52:27 System Test case log message
638 27.09.2012 09:52:26 System internal update
co7 a7 AA AL ANEN.NE O L IR S B P PSR b
oK Cancel
w1 [
@2

Figure 26 Export Revision Selection Dialog in ModelBus Manager

After having selected the revision to be used for the export, another dialog opens up
providing a download link to the assembled archive file.

5.6 Managing Users and Access Rights

ModelBus Manager provides an editor for managing the user groups, the users and its access
rights to ModelBus. In order to use the user related functionalities of ModelBus Manager,
you have to switch to the Users application perspective first by using the perspective bar
located in the top-left corner of the application window. This bar provides a button labeled
with “other...” to select a particular perspective to switch to or — in case of already having
opened the Users perspective before — a button with direct access to the perspective.

45

™ MODELBUS
ModelBus User Guide

Firefox = E > Sm||
mModeIBus Manager .
= @ 127.0.0.1:3080/modelbus?startup=manager i [-‘l - Google P “ﬁ n - 6 |
Repository Users other... M U DELB Us
11]s
(| Application
Users User Model x
Qéb Admin -] =
B i
Name: Admin
Password: sesnsnne
Access Rights
Access Rules: Rule Mask
- 1 New...
Usergroups
@

Figure 27 Export Users Perspective in ModelBus Manager

The Users perspective provides a view called “Users” showing the users and user groups
defined in the current ModelBus installation. A double-click on an item in this view opens an
editor that allows to edit the credentials of a user, its access rights and memberships to user
groups. The changes made to a user or a user group have to be applied by clicking the Save

button in the application bar.

A Please note: Don’t forget to apply changes of ModelBus users credentials also to the
user configuration of your Subversion repository.

46

MODELBUS
ModelBus User Guide @

6. ModelBus Proxy

As of release 1.9.9 ModelBus server is shipped with a proxy component that allows browsing
the repository. Therefore, the URL of an artifact can be used to navigate to the artifact in a
browser. An artifact can be represented in terms of different contexts, e.g. as a set of OSLC
resources.

6.1 Server-Side Setup

In order to setup this feature, you have to configure a ModelBus user for the proxy access
first and assign the appropriate rights to it (see section 5.6). Afterwards, you have to setup
this user to be used for the ModelBus proxy by adding two additional VM arguments to the
startup.bat (for Windows, corresponding file in other operating systems) file in the bin folder
of the ModelBus server installation folder. The required arguments are
org.modelbus.proxy.user and org.modelbus.proxy.password, respectively. The default Admin
user can be configured as followed:

-Dorg.modelbus.proxy.user=Admin -Dorg.modelbus.proxy.password=ModelBus

After having done these steps, you have to restart the ModelBus server using the modified
startup.bat file so that the changes can take effect.

6.2 Client-Side Setup

On the client side, you have to setup the proxy either on operation system level or on tool
level. We recommend doing the latter.

In the following we will demonstrate how to setup the proxy for the Firefox browser:

1. Please open the Firefox options dialog and switch to “Advanced” and “Network”. The
Network tab includes an option “Connection” which allows you to configure the way
the browser connects to the internet.

2. Press the “Settings...” button to open a dialog for changing the proxy configuration of
Firefox.

3. Please select the option Manual proxy configuration and specify the IP or network
name and the port the ModelBus server is running at for the option HTTP Proxy (e.g.
localhost and Port 8080 in case of local setup). Please leave the addresses for the
other proxy connections (SSL, FTP, SOCKS Host) empty! The text field labeled with No

a7

MODELBUS

ModelBus User Guide

Proxy for should contain the value localhost, 127.0.0.1. Figure 28 shows an exemplary

configuration.

Connection Settings

=)

Configure Proxies to Access the Internet
=) No proxy
“) Auto-detect proxy settings for this network

7 Use system proxy settings

@ Manual proxy configuration:

[Use this proxy server for all protocels

Mo Proxy for:
localhost, 127.001

Example: .mozilla.org, .net.nz, 192.168.1.0/24
) Automatic proxy configuration URL:

[] Do not prompt for authentication if password is saved

HTTP Proxy: localhost Port:

SS5L Proxy: Port:
ETP Proxy: Port:
SOCKS Host: Port:

") SOCKSv4 @ SOCKSwS [] Remote DNS

Reload

8080

[o

II Cancel H Help J

Figure 28 Firefox Proxy Connection Settings

4. Apply the settings and close the options dialog.

Now you should be able to browse the repository content within your browser. If
navigating to an URL that points to a repository artifact or a folder, the proxy will tell the
ModelBus server to deliver an HTML page displaying information and content of the
artifact or folder, respectively. In order to access the repository content, you have to

authenticate to the server with valid credentials for a user that has sufficient access rights

for the given URL.

For example, if you enter the URL http://www.modelbus.org to the browser, it will not
show the project’s website but the corresponding folder in the repository. When

requesting repository content first, the browser is prompting for authentication (see

=)

Figure 29).
Authentication Required
0 A username and password are being requested by http://www.modelbus.org. The site says:
"ModelBus Repository”
User Name:
Password:

Figure 29 Authentication Dialog for ModelBus Repository

Please enter valid credentials (e.g. Admin and ModelBus for default Admin user) and confirm.
After successful login, the browser will display a HTML page as depicted in Figure 30.

48

MODELBUS
ModelBus User Guide

. . — e
| | ModelBus - http://wmw.model... % "‘\+
i
(: wwrwv.modelbus.org ¢ |8~ Google A B ¥ & B w » - =
MI]IJELBUS

http://www.modelbus.org

I oo Broveer [051 Rescurce:

[system (Revision: 4, Date: 18 Sep 2014 08:35:31 GMT)

n

Figure 30 Proxy HTML Page for namespace http://www.modelbus.org

Within the tap Repository Browser you can browse the content of the folder and some
metadata by selecting the entries of the subfolders or files. When navigating to the URL
http://www.modelbus.org/system/model/user.ecore, the browser will show metadata of the
last commit of the ModelBus user meta-model like the user that has created the model, its
current revision and last commit date, etc.

The tab OSLC Resources allows browsing information about OSLC resources contained in a
model and even in all models within a given folder (see Figure 31).

49

MODELBUS
ModelBus User Guide

s« 0 - (= [i
|/ ModelBus - hitp://wwwemodel... % ‘-\+
1
€ @ wwwmodelbus.org/systemif=repositon c | B- Google P B 3 A BHR W e - =
M[IIJELBUS

http://www.modelbus.org/system

I oo Broveer [0516 Rescurce-

1. Core Resource
Title: user.ecore
Description: intemnal model creation
http://10.147_69.237-8080/modelbusrepository-rest/www modelbus org/system/model/user ecore ?=oslc
2. Core Resource
Title: ModelBus.user
Description: intemnal model creation
http://10.147_69.237-8080/modelbusrepository-rest/www modelbus org/system/model/ModelBus user?=oslc

m

Figure 31 Information about OSLC resources contained in the system folder

In the default setup, only OSLC information corresponding to the OSLC Core 2.0 specification
(see http://open-services.net/bin/view/Main/OslcCoreSpecification) like the title, the

description and the (about) URI of an OSLC resource are included in that list. Beside
text/html, you can also request a different representation of the resource by changing the
HTTP Accept header for the request. For example, you can request a RDF/XML
representation of the ModelBus user meta-model (URL:
http://www.modelbus.org/system/model/user.ecore) by setting application/rdf+xml as
Accept header value (see Figure 32).

50

http://open-services.net/bin/view/Main/OslcCoreSpecification

MODELBUS
ModelBus User Guide

— e

| ModelBus - http:/fwww.model.. % | B RESTClient x &
.
chrome//restclient/content/restclient html c|[B- Google Pl a ¥ A B W #~ = ‘

File Authentication Headers View Favorite Requests Setting RESTClient
Method | GET w URL hitp:/fwww.modelbus.org/system/model/user.ecore - SEND
Headers I}
Accept: applcation/rdfexml < Content-Type: appiication/rfexmi
Response Headers Response Body (Rew) Response Body (Highiight) | Response Body (Preview)

m

<?xml version="1.0" enceding="UIF-8"2>

<rdf:RDF
xmlns:rdf="http:/ wiw.w3.orq/1999/02/22-rdf-syntax-nss"
x#mlns:oslc_data="http://open-services.net/ rvicemanagement/1.0/"

xmlns:oslc rm="htt]
xmlns:osle="http://cpen-services.net/na/cores”
tp://open-services.net/ns/scmi"
/xmlns. com/foaf

//open-services.net/

xmlns:oslc_scm="

f="http:
xmlns:oslc gm="http://cpen-services.net/na/qmé”
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:oslc_cm="http://open-services.net/ns/cmd”
xmlns:modelbus="http://wiw.modelbus. org/ns/managementa”™

system/model/user.ecore”>

80/modelbusrepository-rest/waw. modelbus. org/systen/model /user . ecore”/>

/open-services.net/n3/core#Responselnfo”™/>

escription rdf:about="http://10.147.69.237:8080/modelbusrepository-rest /wnw. modelbus. org/ systen/model fuser. ecore™>
<rdf:type rdf:rescurce="http://cpen-services.net/ns/coresRescurce”/>

<osle:shortTitle rdf:datatype="
<dcterms:created rdf:datatype=
<dcterms:title rdf:datatype="http://wiw.w.
<dcterms:description rdf:datatype="http://

wwwW.w3.0rg/1999/02/22-rdf-syntax-ns#XMLLiteral">internal model creation</dcterms:desc ke

Figure 32 RDF/XML representation of the ModelBus user meta-model user.ecore

You can also upgrade your setup by adding support for other OSLC domains like
Requirement Management (see http://open-
services.net/bin/view/Main/RmSpecificationV2) and Architecture Management (see
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-
Specification-Version-2.0/). If you are interested in such an upgrade, please contact us.

Beside the Repository Browser and the OSLC Resources tabs, an additional Tab Source is
available in the context of artifacts that allows to display the content of an artifact, e.g. the
user.ecore model (see Figure 33).

51

http://open-services.net/bin/view/Main/RmSpecificationV2
http://open-services.net/bin/view/Main/RmSpecificationV2
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/

MODELBUS

ModelBus User Guide

[X - [E=R e
PR
I ModelBus - http://www.model.. * \+
€ | @ www.modelbus.org/system/model/user.ecore?=repository | |B- Google A B ¥ & H wuw - =
| http://www.modelbus.org/system/model/user.ecore |
I s-oosiory Bovser [0516 Resources [sour- I
<?xm] version="1.0" encoding="ASCII"?> i
<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://ww.omg.org/MMI" xmlns:xsi="http://wm.w3.0rg/2001/XMLSchema-instance” xmlins:ecore="http://www. eclipse.org
femf /2002 /Ecore” name="user" = http //www modelbus. org/system/model/user. ecore” nsPrefix="user"»
<eClassifiers xsi:type="ecore:EClass"” name="UserModel"
<eStructuralFeatures xsi core:EReference” name="ownedUser” upperBoun 1" eType="//User” containment="true" resolveProxies="false”
«eStructuralFeatures xsi: core:EReference” name="ownedUserGroup” upperBound: —:L“ eType="//UserGroup” containment="true” resolveProxies="false"/=
</eClassifierss
<eClassifiers xsi:itype=" acnre'EC'I ass" name="User" eSuperTypes="//RuleElement //NamedElement">
«<eStructuralFeatures xsi pe="ecore:EAttribute” name="password">
«eType xs1:type="ecore: EDataType" href="http://www.eclipse.org/emf,/2002/Ecore#/ /EString” />
</eStructuralFeaturess
<eStructuralFeatures xsi:type="ecore:EReference” name="usergroups"” upperBound="-1" eType="//UserGroup" eOpposite="//UserGroup/user" /> g
</eClassifiers=
<eClassifiers xsi:type="ecore:EClass" name="UserGroup” eSuperTypes="//NamedElement //RuleElement">
«eStructuralFeatures xsi:type="ecore:EReference” name="user” upperBound="-1" eType="//User" eOpposite="//User /usergroups”/=
</eClassifiers=
<eClassifiers xsi typr ecore:EClass” name="NamedE]lement >
<eStructuralFeatures xsi:type="ecore:EAttribute” name="name” lowerBound="1"»
«eType xs1:type: \:ur'e.EDataType href="http://www.eclipse.org/emf/2002/Ecore#/ /EString” />
</eStructuralFeaturess
</eClassifierss
<eClassifiers xsi:type=" acure-EC'Iass name="Rule"=
<eStructuralFeatures xsi pe="ecore:EAttribute” name="rule">
<eType xsi:type="ecore: EDataType" href="http:/ /www.eclipse.org/emf/2002/Ecore#/ /EString” />
«</eStructuralFeaturess>
«<eStructuralFeatures xsi:t core:EAttribute” name="mas
<eType xsi:type="ecore: EDataType" href="http://waw.eclipse. or'g/‘alrrF/ZODZ/Ecﬂre#//EInt"/b
«/eStructuralFeaturess
</eClassifiers=
<eClassifiers xsi:type="ecore:EClass” name="RuleElement”>
<eStructuralFeatures xsi:type="ecore:EReference” name="ownedRule” upperBound="-1" eType="//Rule” containment="true” resolveProxies="false"/»
</eClassifiersx
</ecore:EPackage>
-

Figure 33 Content of the ModelBus user meta-model

52

MODELBUS
ModelBus User Guide

7. Installing ModelBus Client for Eclipse

Like the ModelBus server itself, the ModelBus TeamProvider client release 1.9.7 or higher is
designed to obtain the required configuration options in a two-step manner. At first, it tries
to locate the ModelBus configuration model. In the second step, if no configuration model
was found, the TeamProvider client will rely on the values for the environment variables
MODELBUS_REPOSITORY_LOCATION and MODELBUS_NOTIFICATION_LOCATION for
configuration.

7.1 Configuration Options with Local ModelBus Server

If you have either a local ModelBus server installed or a configuration model created and the
MODELBUS_ROOT environment variable set to the corresponding value (see section 3.1.1),
the TeamProvider will be able to load all the required configuration options from the
configuration model. Otherwise, you will have to define the environment variables
MODELBUS_REPOSITORY_LOCATION and MODELBUS_NOTIFICATION_LOCATION as described
in section 7.2.

7.2 Configurations Options for “Standalone” Client

If you neither have a local ModelBus server installed nor at least the configuration model
available to the ModelBus framework (see section 3.1.1), the ModelBus TeamProvider client
first needs the same environment variable MODELBUS _REPOSITORY LOCATION as the server
that points to the location where the server is running (Figure 34). “localhost:8080" or
“0.0.0.0:8080” must be replaced by the real host and port it is running on.

d N
Systemvariable bearbeiten @

Name der Variablen: MODELBUS_REPOSITORY_LOCATION

Wert der Variablen:

[oK] [Abbrechen I

Figure 34 MODELBUS_REPOSITORY_LOCATION Variable

In addition, the ModelBus TeamProvider client needs the
MODELBUS_NOTIFICATION_LOCATION environment variable set (e.g. tcp://localhost:61616)
in order to be able to receive the notifications broadcasted by the ModelBus server (Figure
35).

53

MODELBUS
ModelBus User Guide

A Please mind the “tcp://” in the notification address.

Systemvariable bearbeiten &J

Mame der Variablen: MODELEUS _NOTIFICATION_LOCATION

Wert der Variablen: tep: fflocalhost: 61616

[oK l [Abbrechen]

Figure 35 MODELBUS_NOTIFICATION_LOCATION Variable

7.3 Installing TeamProvider Feature for Eclipse

ModelBus comes with a set of client tools for Eclipse. This contains a TeamProvider
implementation, a model repository browser and a notification view. These client tools can
be installed in any Eclipse based tool and provide basic client functionality for ModelBus.

It is suggested to use the “Modelling Tools edition” since it includes a lot of tools needed for
ModelBus TeamProvider. You may use the following link to pick up an Eclipse Modeling Tools
distribution:

http://www.eclipse.org/downloads/

You can install Eclipse by just unpacking the archive to the location you prefer. Then start the
Eclipse and call “Install New Software” from the “Help” menu and press “Add” in the window
popping up (Figure 36).

54

http://www.eclipse.org/downloads/

ModelBus User Guide

MODELBUS

v 1]

| (B
> oe)
PR

|«E

Welcome

Help Contents
Search

Dynamic Help

Key Assist... Ctrl+Shift+L
Tips and Tricks...
Report Bug or Enhancement...

Cheat Sheets...

Lheckforllodatec

Install New SofKare.u 1

About Eclipse

type filter text

Name
[[1@ Thereis no site selected.

Details

V| Group items by category

@

Find more software by working with the 'Available Soffware Sites’ pref 2

Version

V| Show only the latest versions of available software

r
= Install ﬂ&
Available Software I—
Select a site or enter the location of a site. 3)‘_
<
Work with: type or select a site -

| Hide items that are already installed

What is already installed?

[V] Contact all update sites during install to find required software

N

Cancel

Figure 36 Adding New Software Site (1)

In the window appearing enter the location of the update site — you find it on the ModelBus
Download page (see http://www.modelbus.org/modelbus/index.php/downloads/current-

release. Give the site a name e.g. ModelBus (Figure 37).

[& Add Repository

MName:

@

ModelBus

Location: J‘mwv.modelbus.0rg,."m0delbus,fdownloads,fcurrentfsitali

Local...

Archive...

[ok

J{

Cancel]

Figure 37 Add a New Site (2)

After pressing OK, the software available will be shown and you select all features to be
installed. Start the installation by pressing “Next” (Figure 38). You will be guided through the
next steps of the installation by Eclipse. For our example, in addition to the ModelBus
TeamProvider software which is always needed, you can also install the ModelBus Services
Examples, the Interactive Modeling software or the Papyrus Adapter which are optional.
There are two Papyrus Adapters to install which are compatible to different versions of
Papyrus MDT. You have to choose one of them depending on your Papyrus installation.

55

http://www.modelbus.org/modelbus/index.php/downloads/current-release
http://www.modelbus.org/modelbus/index.php/downloads/current-release

MODELBUS
ModelBus User Guide

Available Software

Check the items that you wish to install. -

Work \c\r\th:e ModelBus - http://www.medelbus.org/modelbus/downleads/ current/site - Add...

Find more software by working with the "Available Software Sites” preferences.
type filter text

MName Version
3 000 ModelBus Interactive Medeling (Beta Version)

> [¥] 000 ModelBus Services

> 000 ModelBus TeamProvider

4 000 Papyrus MDT Adapter

B @ MeodelBus Papyrus Integration Feature 15.7.201211131647
@ Papyrus Version 0.9.x Integration 158.7.201211131647
[selectal | [Deselectan 15 items selected
Details

This category contains a feature to enable interactive modeling with ModelBus, i
Show only the latest versions of available software [] Hide items that are already installed

Group items by category What is already installed?

[] Show only software applicable to target environment

Contact all update sites during install to find required software

3 .
@) < Back MNest > Finish

Figure 38 Available Software

After having installed the ModelBus TeamProvider, please restart Eclipse to apply the
changes properly. Then, in case of ModelBus release 1.9.7 or higher, please open the
ModelBus preferences page, specify the user credentials and set the path to the
configuration model. Optionally, you can tell the TeamProvider to use a SSL encrypted
communication with the ModelBus server if the setup of the latter supports this (see section
4). Figure 39 shows some exemplary configuration settings using the ModelBus preferences
page.

56

ModelBus User Guide

M[]IJELBUS

> Plug-in Development
&> Run/Debug

O e — e — i]|
)| | type filter text ModelBus [CR > |
b General ModelBus User Credentials
[Ant
1> Ecore Tools Diagram Username: Admin
EMF Compare Bt
» EMF Facet
5 Help Configuration Model: D:'\MeodelBusServer\serverConfiguration\modelbus.config
& Install/Update [#]ise Encrypted Communication (55L, requires restart);
[Java
i Model Validation
> ModelBus
MoDisco
1> Mylyn
» OCL
1> Papyrus

» Team
Restore Defaults Apply
=

Figure 39 ModelBus Teamprovider Preferences Page (1.9.7 or higher only)

7.4 Testthe ModelBus Server and Client installation

In this section we will show how you can test your installation.

Start the client and create a new Java project (Figure 40). Name it “Test1-MR”.

File Edit Source Refctor Navigate Search Project Run Window Help
re - BrO-Qr BEGT B A LG b
% PackageBxp 53 fs Hierarchy) ™ O |
BS| & =
New » | 2% JavaProject
ShowIn Alt+Shiftew » | [Project..
s renor | B Package

Figure 40 Create a Java Project

1. Right click on the newly created Project to open the context menu and select “Team”

and “Share Project...” (Figure 41).
2. Select ModelBus as repository type (Figure 41)
3. The repository creation/selection is disabled (grayed) (Figure 41)

57

MODELBUS
ModelBus User Guide

& Java - Eclipse
File Edit Source Refactor Navigate Search Project Run Window Help
[~ B0 Q- HG- ®c S M@ @ L0~
[% Package Explorer 3 =a < Share Project
. = ol Share Project
1= Testl-MR
New > Select the repository plug-in that will be ¢
Go Into
Open in New Window Select a repository type:
Open Type Hierarchy F4 “: Do
Show In Alt+Shift+W » .
—s
Copy Ctrl+C [ModelBus 2
= Copy Qualified Name 1}
5 Paste Ctrl+V
K Delete Delete
Remove from Context Ctrl+ Alt+Shift+Down
Build Path > S
Source Alt+Shift+S »
Refactor Alt+Shift=T » File System Repository
S [P File System Repository Properties
i Export.. ~
Refresh F5 Location:
Close Project pe| [Declaration http://localhost:9191/modelbusrepository
Assign Working Sets... h ' 3
Run As , Resor _
ety ~
Team > Apply Patch...
Rzt f Share Project...
Restore from Local History...
v
Figure 41 Share Project via Team Menu
What happened?

ModelBus repositories have Access Control! Refer to section 8 for setting user credentials.

Try again to share project (see Figure 42 Share Project via Team Menu — Second Try). Step 1
and 2 are the same as in the first try (Figure 41). Now we can select the entry
“http://localhost:xxxx/..... “. Enter a namespace for the project in the repository in the
location field after the” http://” as you like it. In our example it is “Test1-MR”. Press “Finish”
afterwards. To commit the content of the project you have to synchronize your project and
click commit (see Figure 43, Figure 44). You can enter a commit message and press finish.

58

™ MODELBUS
ModelBus User Guide

P

File Edit Source Refactor Navigate Search Project Run Window Help

re - $-0-Q- HG- OS F~ g5~
BR|w <
. e%ls Share Project

b (&> Testi-Mae
New » Select the repository plug-in that will be v
Go Into
Open in New Window Select a repository type:
Open Type Hierarchy F4 € coo
Show In Alt+Shift+W » £ cuc

o

Copy Ctrl+C I ModelBus 2

&5 Copy Qualified Name %

[Paste Ctrl+V

¥ Delete Delete
Remove from Context Ctrl+Alt+Shift+Down
Build Path »

Source Alt+Shift+S » w
Refactor Alt+Shift+T » .
File System Repository

2=y Import...

= | ‘mpo File System Repository Properties

& Export...

& Refresh F5 4
Close Project oc| & Declaation| L %
Assign Working Sets... . hi localhost:9191/modelbusrepository 3
Run As » fean
-~ , % |
Team > Apply Patch...

Compare With > Share Project \
Restore from Local History... 1 ﬁ
J

Figure 42 Share Project via Team Menu - Second Try

e
4[] Test5 [hitptr—sal

8 sic
=k JRE Syst

New 3

GoInte

Open in New Window
Open Type Hierarchy F4
ShowIn Alt+Shift+W »

Copy Ctrl-C

Copy Qualified Name

Paste

X o P

Delete

I

. Remove from Context

Ctrl+V
Delete

Ctrl+Alt+Shift+ Down

Build Path 3
Alt+Shift+5 »
Alt+Shift+T b

Source
Refactor

Import...
Export...

% B[

Refresh F5
Close Project
Assign Working Sets...

Run As 3
Debug As 3
Compare With v
Replace With b
Restore from Local History...

Team v Synchronize

Configure 3 Update

Commit...

Properties Alt+Enter

ModelBus Repositery (Test) Apply Patch...

a 2 Test5 [http://Test/]
b src
1 B Settings
& .classpath

Disconnect

Unlock
Lock

Figure 43: Synchronize the shared Project

59

MODELBUS
ModelBus User Guide

%! Problems @ Javadoc |&, Declaration | = ModelBus Status View £0 synchronize 52
=i

ModelBus Repository (Test)
4 2 Test5 [http:y//Test/]

B src Show In 4
> [EEr Settings [Z Copy Ctrl+C
D} .clas.spath (E Paste Patch Ctrl+V
E® project ¥ Delete Delete

Move...
Rename... F2

Synchronize
Expand All

Remove from View

Update

Commit...

Overwrite

Ignore Rermote

Figure 44 Commit project via Synchronize View

Now we have to switch to the “ModelBus Repository Exploring” perspective (Figure 45):

1. Select “Other” within the first step
2. From the window opening you can select “ModelBus Repository Exploring”

t R Help @ Java \aeraun)
New Window - b3 J Java Browﬁnq
‘ -
New Editor 1 T Java Type Hierarchy
: mModelBus Repository Exploring 2
Open Perspective » | %5 Debug DDlanaing 1}
Show View » | &2 Java Browsing e e
Customize Perspective... Oth&..
c o e A | & . -

Figure 45 Select ModelBus Repository Exploring Perspective

Within this perspective we can see the newly created namespace in the ModelBus Repository
view (Figure 46).

By the way: the “Test1-MR” artifact we created in the Eclipse Explorer (e.g. in the Java
Perspective) is called a Project. In the “ModelBus Repository Exploring” perspective we call it
a namespace since it represents a namespace in the repository. The names of both need not
necessarily be the same. Using the “Share Project” they are associated to each other.

60

™ MODELBUS
ModelBus User Guide

File Edit Navigate Search Project Run

milh > Q-+~
[] ModelBus Repository &3 = E
5y & D WP |@
[(= Test-MR5|

[= www.modelbus.org 4

Figure 46 The Newly Created Repository

61

PART Il

Eclipse Client

MODELBUS
ModelBus User Guide

8. ModelBus Repository Access Control

To work properly with the ModelBus Client for Eclipse the correct user credentials need to be
set. Therefore execute the steps illustrated in Figure 47:

1. Select Preferences

2. There select the “ModelBus” preferences

3. Here you can enter “Username” and “Password”. Be default, ModelBus is shipped
with username “Admin” and password “ModelBus” configured. This will be those to
be wused if you freshly installed a new local ModelBus repository.
If you did not install the ModelBus repository locally on your own machine, you have
to ask the administrator of the repository you are linked to for the credentials
password to use.

Window | Help
New Window
New Editor E
r Y
Show View
ModelBus MR
Customize Perspective...
Save Perspective As ge:eral odelBus User Credentials '
o v
Reset Perspective... Do Usemame: Admin
Close Perspective Ecore Tools Diagram Password: e 3
EMF Compare
Close All Perspectives Help 5 ionddedel o) 107851 i i ol £ C b
5 ® = < 5 -
Navigation Install/Update [] Use Encrypted Communication {SSL, requires restart)
Java
Preferences 1 > odel Validation
_-______—”. ModelBus
Mylyn 2
PTag-in Developmen
Run/Debug
Team
Usage Data Collector
[Re;toregefaults] l Apply]
@) [oK l [Cancel]
o

Figure 47 Set ModelBus User Info

Additionally, you have to enter the path to a ModelBus configuration model. If you
want to connect to a ModelBus server using HTTPS and the server itself is configured to run
using the protocol, you can provide a ModelBus configuration model to the Team Provider
including the required information for encrypted communication (see chapter 4 for more
information concerning the setup). Therefore, the ModelBus Preferences Page provides two

additional configuration options (see Figure 48):
65

MODELBUS
ModelBus User Guide

r

type filter text ModelBus - - -
G |
Enera ModelBus User Credentials
Ant
oo Username: Admin
Ecore Tools Diagram D I T T Ty

Install/Update [¥]iUse Encrypted Communication [S5L, requires restart}
Java

Maodel Validation

ModelBus

Myhyn

Plug-in Development

Run/Debug

Team

EMF Compare
Help Cenfiguration Medel: C\developmentiserver_197RCT\serverConfiguration\modelbus.config

Usage Data Collector

lRestore Qefaults] [Apply]
@:J [oK] [Cancel]

Figure 48 ModelBus TeamProvider HTTPS Setup

1. Configuration Model: This option states which configuration model should be used for
the setup. If you have a ModelBus server running locally, this should (but does not
necessarily has to) be the configuration model included in the ModelBus server
distribution (see chapter 3.1.1). Otherwise it can be placed at a file system location of
your choice.

2. A checkbox to tell the Team Provider whether to use encrypted communication. This
option requires the availability of a configuration model as stated in the
“Configuration Model” option. Changing this option at runtime may require restarting
the Team Provider.

The connection status to the ModelBus repository is indicated by an icon in the status line of
the “ModelBus Repository Exploring” perspective (see Figure 49).

@->

Figure 49 Connection status to ModelBus repository

If the ModelBus icon is greyed, there might be a problem with the connection to the
repository. When you move the mouse cursor over the icon, the connection status is shown
66

MODELBUS
ModelBus User Guide

as a tooltip. In order to show a status view including services connected to the ModelBus,
please click on the icon.

67

MODELBUS
ModelBus User Guide

9. Managing Access Rights with ModelBus Client for Eclipse

If you do not have a ModelBus server running, just start it as described in section 3.2. The
client is started by starting the Eclipse it is installed in.

9.1 Finding the “model” namespace in the repository

Switch to the “ModelBus Repository Exploring” perspective (see Figure 45).

There you can explore the model repository and can find the namespaces present in the
repository (e.g. the one created earlier in section 7.4). The interesting one is
www.modelbus.org. Expanding this one will show something similar to Figure 50.

| | ModelBus Repository 7 =0

¢85t ol

¢ [= Testl-MR5 2086

4 [= www.modelbus.org 2070
4 [systemn 2070

4 = model 2070
5 .project 2070
= dependencies.eccre 105
|=| leck.ecore 39
ModelBus.lock 1930

& ModelBus.user 2070
: |=| user.ecore 35
[.project 1329
» = www.eclipse.org 2026

Figure 50 ModelBus repository tree

The ModelBus.user model is the one which is needed for managing access rights to
ModelBus. It can be opened in the User Model Editor via the context menu of the ModelBus
Repository view (Figure 50). This will look like shown in Figure 51. The file shown there is the
“head” revision directly from the repository. Since it is not a local copy you are not allowed
to change it and it is opened “read-only”.

68

MODELBUS
ModelBus User Guide

L&) ModelBus.user [Rev:HEAD] 52 =0
|._|>_‘| Resource Set

a | &) file:/C:/workspace/runtime-new/.metadata/.plugins/org.modelbus.team.eclipse.core/getfilecontent767419614-
4 4 Model

4 < User Admin
4 Rule.”

4 T

Selection | Parent | List| Tree | Table| Tree with Columns

Figure 51 ModelBus.user opened in User Model Editor

To be able to edit the model a local copy of it has to be created in the local workspace.

9.2 Check out a name space to the local workspace as a shared project

Open the “ModelBus Repository Exploring” perspective and expand the
“http://www.modelbus.org/system/model” namespace (see section 9.1).

On “model” select “Check Out” in the context menu (Figure 52).

|1 ModelBus Repository 53 L =lER
> & B R <
. = Testl-MRS <
4 [= www.modelbus.org 11
4 = system 11
4 = model11

= lock. Mew
Mo

=

d
Mod & 1 Check Out
=] user) L4 Find/Check Out As...

Figure 52 Check out the “model” name space

Switching back to the Java perspective you will find a “model” project, the shared one from
the repository. You can now open ModelBus.user in a User Model Editor (Figure 53). This will

69

MODELBUS
ModelBus User Guide

open an editor for the tree-view of the model. Do not use the text editor. This will only open
the model in a plain XML view and not check your modifications for syntactical correctness.
You have a great chance to destroy the accessibility of ModelBus.

[% Package Bxp i e Hierarchy| = O

= | =
4 1= model
#] lockecore
14! ModelBus.lock
i ModelBus.user
#] user.ecore Mew 3
1 b‘J Test
Open F3
Open With » | @ User Model Editor [
Show In Alt+Shift+W » B TextEditor
= Copy Ctrl+C System Editor
5= Copy Qualified Name In-Place Editor
2 Paste Ctrl+V Default Editor
¥ Delete Delete

Other...
Figure 53 Open ModelBus.user in User Model Editor

After finishing the editing of the user model you have to save the changes (in the workspace)
and also to commit them back to the repository. In the case of conflicts we will get informed
during the commit. The Team Synchronizing perspective, will be explained in section 11.

9.3 Add a new user and commit changes to the Repository

Figure 54 shows ModelBus.user in the user Model Editor in a tree view. During editing it will
be aware of the corresponding user meta model and therefore give support to make only
syntactically legal changes which are conform to the meta model.

i ModelBus.user 2
5 Resource Set

a | & platform:/resource/model/ModelBus.user
a <4 Model
4 4 User Admin
< Rule *

Figure 54 ModelBus.user in User Model Editor

To be able to see details about the elements, you need to open the Properties View (see
Figure 55). In Figure 56 you can see the user model with the properties of the selected “User
Admin” model element.

70

™ MODELBUS
ModelBus User Guide

b _____________________| D oo view S
Run | Window | Help
[8d New Window i = B m | type filter text]
New Editor =; PR"= peneral -
!dBuﬁ [Bookmarks
our) 4’ Classic Search
Show View Ant E Console
Consol Alt+Shift+Q, C % Emoxlog
<+ 4 Customize Perspective... = SAD l @ GMF Dashboard L
4 =) = - p |
Save Perspective As... (&, Declaration Alt+Shift+Q, D ? l’\r/\lteLnal Web Browser
) @] Error Log Alt+Shift+Q, L (X Markers
Reset Perspective... =)) 5. Navigator
Close Perspective Tz Hierarchy Alt+Shift+Q, T 85 Outline
i o Palett
Close All Perspectives GYiaacoc AlteShift+Q,J B pfcbI:m' £
%5, Navigator 4 >
Navigation » | o= - ; € Progress
9 o= Outline Alt+Shift+Q, O T PTSErCENpTTer
Preferences ‘I [§ Package Explorer Alt+Shift+Q, P Z F:r erties
[2. Problems Alt+Shift+Q, X & Tacks
<l
@ Progress & Templates 2
(5 Project Explorer & Ant
= = CDO -
4 Search Alt+Shift+Q, S =
E] Task List Alt+Shift+Q, K Use F2 to display the description for a selected view.
& Tasks
L Templates [2K] [Cancel
Other$ Alt+Shift+Q, Q

Figure 55 Open Properties View

& ModelBus.user 53

[T Resource Set

k& platform:/resource/model/ModelBus.user
< Model
< User Admin
4 Rule

Selection‘ P‘arentl Listl Tree| Tab|e| Tree with Columns|

(£ Problems (@ Javadoc (@) Declaration (El Properties %

Property Value
Name = Admin
Password = ModelBus

Figure 56 ModelBus User Model with Properties View

For adding a new user (see Figure 57):

Create a User element under Model
Set its properties (Name, Password)
Create a Rule element within User
Set its properties (Rule, Mask)

P w NP

For Mask you can set the values 1, 2, 4, -1 with the following meaning: Read=1, Write=2,
Execute=4 and Everything=-1.

71

M[]IJELBUS

ModelBus User Guide

4 ModelBus.user 83

(7, Resource Set
Py L TR
4|4 Model|
4 4 Us{ NewChid v (4 Dyer |
N s
T Ondo T
Redo Ctrl+Y 1
4 *ModelBus.user 22 = B[Bl TaskList 52
[Resource Set 748 = |
& platform:/resource/model/ModelBus.user Find:
4 Model)
4 User Admin - =
& Ryl * 82 Outline 2
[4 User kde] 2
& platform:/resou
Selection | Parent | List | Tree | Table| « m

[2! Problems | @ Javadoc @) Declaration | [Properties £3

£
roperty Value
Name 2 I= kde
Password = kdeModelBus

4 "ModelBus.user 53
[Resource Set
4 @ platform:/resource/model/ModelBus.user

4 4 Model
4 4 User Admin

eBile =

4 User kde ~
New Child »|%g Rk I

I = I

&) *ModelBus.user {2
[Resource Set
4 § platform:/resource/model/ModelBus.user
4 4 Model
4 < User Admin
< Rule.”

PRT

[i 4 Rule.”

L

] 4

Selection | Parent | List| Tree| Table | Tree with Columns

{2/ Problems | @ Javadoc [[, Declaration | 1 Properties 53

' Property

Value
Mask 4 s |
Rule =x

Figure 57 Add a new User

Next you have to save the changed model in the local workspace and afterwards to commit

the changes back to the repository (see Figure 58).

In the case that there are activities by other team members on the user model you should do

a synchronize before the commit and thereby switch to the Team Synchronizing perspective

which is useful to handle the relevant aspects with concern to discovering and managing
conflicts. This will be described in section 11 in detail.

72

ModelBus User Guide

MODELBUS

[# Package Explorer &3

=8

& ModelBus.user 1
ﬁ‘; Resource Set

4 |I== mode
&] lo
M
M
#] us
5 2 Test-

B

=S|

x

(2]

%]

&

Figure 58 Commit Changes to Repository

Mew

Go Into

Open in New Window
ShowIn

Copy

Copy Qualified Name
Paste

Delete

Remove from Context
Build Path
Refactor

Import...
Export...

Refresh

Close Project

Close Unrelated Projects
Assign Working Sets...

Run As

Debug As
Team
Compare With
Replace With

Ctrl+Alt+ Shift+Down

Alt+Shift+W »

Ctrl+C

Ctrl+V
Delete

Alt+Shift+T »

y El/ModelBus.user

L3

F5

ble | Tree with Columns

eclaration | = Properties &2

Wl

Update

- v v v ¥

Synchronize

Commit[})

After committing it to the ModelBus repository you may disconnect the shared project and

even delete it from the workspace (see Figure 59 (1) and (2&3)).

[T Package Exp 1

42 modd{

@ 1o

T Hierarchy| = O

New
Golnto

Open in New Window

Show In

Copy
Copy Qualified Name
Paste
K Delete
Remove from Context
Build Path
Refactor

Import...
Export...

L F

& Refresh
Close Project
Close Unrelated Projects
Assign Working Sets...

Run As

Alt+ Shift+ W »

CtrlsC

CtrlsV
Delete
Ctrl~Alt+Shift~Down
»
Alts ShiftsT »

[, Declaration
Dol
Team b Synchronize
Compare With » Update
Replace With > Commit
Restore from Local History... Apply Patch...
PDE Tools 1 » Dism“"e%
Progedt: Alt:Fnter

£ Package Exp X

4 [model
&) lo|
M
M
@] us
& Test

B

%o i1
[2 Hierar

New
Go Into

Open in New

Show In

Copy
Copy Qualifie

"3 Delete Resources

o Are you sure you want to delete ‘mode from the file system?

nt be undone) 3

¥| Delete project contents on disk (cam

i

Preview > ok |[canca |

Figure 59 Disconnect shared project and delete it from workspace

The content of the Package view (1) and the Modelbus Repository (2) after disconnect and

delete is shown in Figure 60. The changed ModelBus.user is removed from the workspace.

You can even inspect it there by opening it in the User Model Editor (read-only). If the new

73

MODELBUS
ModelBus User Guide

user is not shown in the ModelBus.user file in the repository you probably forgot to save the
file in the workspace before commit or you completely forgot to commit.

File Edit Navigate Search Project Run Window Help

B> Q- B &5 [E ModelBus Re... | & Java
[J ModelBus Repository £3
[£ PackageExp &3 . T2 & Test-MR9 : i
(& www.modelbus.org 12 | % ModelBus Repository Browser ¢ [/ History || & ModelBus Properties
(& system12 http://www.modelbus.org/system/model
ST = model 12 =
& Test . Name Revision Last Changed At Last Changed By

=. 12 24.11.0900:00 kde

=) .project 10 24.11.09 00:00 kde

1 lock.ecore 6 24.11.09 00:00 kde

ModelBus.lock 8 24.11.0900:00 kde

ModelBus.user 12 24.11.09 00:00 kde
user.ecore 2 24.11.09 00:00 kde

Figure 60 Package View and ModelBus Repository (Browser) after Delete from Workspace

9.4 Change the password for the current user

Checkout the ModelBus.user to your local workspace (see section 9.2), open the model in the
User Model Editor (see Figure 53) and enter the password for the current user in the
Properties View.

&) *ModelBus.user 2
L?_ﬁ Resource Set

la) platform:/resource/model/ModelBus.user
4 Madel
4 User Admin
4 Rule *

Selection | Parent | List| Tree| Table | Tree with Columns

[2{ Problems | @ Javadoc |[&, Declaration | =] Properties 3

Property Value
Marme 1= Admin
Password = newPassword

Figure 61 Change password of the current user

Save the model and commit the model into the repository. You get a message box asking you
to change your password in the ModelBus Preferences Page, too (see Figure 62). After
pressing “Ok”, you get a message that a problem occurred because the combination of

74

™ MODELBUS
ModelBus User Guide

username and password is not valid (see Figure 63). Then, you have to change your password
in the ModelBus Preferences Page (see Figure 47). After synchronizing the model project, you
will see conflicts, which can be resolved by “overwrite” or “ignore remote” and “commit...”.
After this procedure, you can work on normally.

=
|—_3_L‘ Problems = Changing current password p——— '_ - ﬁ
ModelBus Rep

4 1= mod | @0 You are about to change your password!

e WLV Please change your password in the ModelBus Preferences Page after committing the
file.

| r‘_ ol s o
;[= Problem Occurred . E@g

1g

P

" has encountered a problem.
15 II :l

T nn

An internal error cccurred during: ™"

oK || << Details

An internal error cccurred during:
org.modelbus.dosgirepository.descriptor.RepositoryAuthenti
ficationException: Mo valid user and password combination.

-

Figure 63 No valid username and password after changing ModelBus.user
9.5 Example User Access Model

This section gives a small example how to create access rules in order to separate access for
the ModelBus users in a coherent and consistent way. This example has a fairly simple
respository structure as outlined in Figure 64.

75

MODELBUS

ModelBus User Guide

¢ = www.modelbus.org 51
» = www.eclipse.org 9
4 [projects 53
4 [= ForUserl 19
5 .project19
4 [~ ForlUser? 39
5 .project 39
4 [= ForUser3 53
¢ = settings 53
. [bin 53
. [=rc 53
[£] .classpath 53
5 .project 53

Figure 64 Example Repository Structure

In this example we have three developers: Userl, User2 and User3. All shall have access to
the projects folder, as they store projects in this folder. But each developer shall only see its
own project. So all three developers are bound to the user group developer which contains
access rules for accessing the namespace http://project and in addition rules for accessing
other relevant namespaces, e.g. http://modelbus.org/system/model. In Figure 65 you can see
a fundamental set of rules which would be needed for the developer user group. It also

shows the individual rules for each of the developers.

76

MODELBUS
ModelBus User Guide

4 @ platform:/resource/www. modelbus.org/systemn/model/ModelBus.user
4 4 Model
w4 User dmin
a <4 User Userl
<+ Rule *//projects/ForlJserl.”
4= User User?
<+ Rule *//projects/Forlser2 ®
4= User User3
<+ Rule *//projects/Forllser3.”
4= Group Developer
4+ Rule http:
4+ Rule http:/
<+ Rule http://
<= Rule .*//projects
4 Rule */fwww.modelbus.org

b

b

b

<+ Rule *//fwww.modelbus.org/systemn

4 Rule *//www.modelbus.crg/systern,/model

<= Rule .*/fwww.modelbus.org/system,/model/ *status.”
4= Rule .*/fwww.modelbus.org/systemn/model/ lock.”

Figure 65 Rules for Developer User Group and its users

77

MODELBUS
ModelBus User Guide

10. Checking ModelBus and Services Status

There are different ways of checking the availability of the ModelBus. One has been used
before and is usable independent of the use of the TeamProvider ModelBus client. Within an
Web browser window the invocation if the address that has been specified within the
MODELBUS_REPOSITORY_LOCATION variable or as the repositoryLocation, respectively (see
section 3.1) followed by the query string “?wsd/l” will display the WSDL of the ModelBus
repository. In our example the invoke: http://localhost:9191/modelbusrepository?wsdl.

Another possibility to check not only the ModelBus availability but also the status of available
services is offered in the TeamProvider client. In the status line there is a small ModelBus
icon? (see Figure 66). Availability of ModelBus will be indicated by a red icon, unavailability by
a grey one. If the icon is clicked, the ModelBus Status View will be focused which shows more

detailed information about the repository location and the registered services (see Figure
66).

(7% ModelBus Repasitory |) History |5 ModelBus Properties |[] Notification View |57 ModelBus Status View &2 _[Zi Problems| = O
Startup time: /i

Repasitory service location: n/a

Repository service location (HTTPS): n/a

Registered ModelBus services:

Mame Location Startup

(1% MadelBus Repasitory | & History | =" ModelBus Properties | [l] Notification View |57 ModelBus Status View £2 _[Z/ Problems| = O
Startup time: 20.01.2012 15:17:56
Repository service location: http://0.0.0.0:8080/modelbusrepository

Repository service location (HTTPS): https://localhost8181/medelbusrepository (in use)
g ModelBus services

Name Location Startup

?
| ModelBus available (Last response: 20.01.2012 15:43:51)

Figure 66 ModelBus Services Availability

LIf it is not visible please switch to the ModelBus Repository Exploring perspective once (see Figure 45 how to
open it if not done before). Afterwards it should be visible in other perspectives, too.

78

http://localhost:8080/modelbusrepository?wsdl

ModelBus User Guide

MODELBUS

11.

The Team Synchronizing Perspective

To illustrate the synchronization process and further aspects of ModelBus a small UML

example model shall be introduced. If you have installed an Eclipse distribution package

including the Modeling Tools for your ModelBus client, you may create the example UML2

class model and diagram directly within your client. Create an empty project “Demo-

Example” with a folder “models” in it. Within it you create a folder “class-models” where you

can create the class diagram by invoking “New = Other” in the context menu of it and select

“Class Diagram” (see Figure 67). Name it “library”. This will automatically create the UML

model (“library.uml”) when you create and fill up the class diagram (“library.umiclass”).

[# Packag 523 . s Hierarc | = O

4 1 Demo-Example
4 (= models
e
New
Open in New Window
ShowIn

Copy
% Copy Qualified Name
7 Paste
R Delete
Remnove from Corted
Build Path
Refactor

24 Import...
4 Export...
Refresh
Assign Working Sets...
Run As

Debug As

Team

» |25 JavaProject
IS Project..

Alt+Shift+W » | # Package
cutec |G Class
@ Interface
cuy |G Enum
Delete @ Annotation
&9 Source Folder
t+Shift+Down |4 javs Working Set
*|C5 Folder
Alt+Shift+T » File
Untitled Text File
E9 JUnit Test Case

& Operational QT Transformation
& Operational QUT Library

7 Task
»

F5

3 New " -

‘@g

Select a wizard

Creates Class diagram.

Wizards:
(& Plug-in Development

& Tasks
edeamlogical Model Exaropl

4 (= UML 2.1 Diagrams
[Activity Diagram
[A Class piagram
Lo {ML "

Diagcac

Ctrl+N

[2] Composite Structures Diagram
[2] Deployment Diagram

[2] Profile Definition Diagram

[state Machine Diagram

[2] Use Case Diagram

Next >

Cancel |

4
|> {8 other...

Figure 67 Create a UML model and class diagram

The UML class diagram and model example is shown in Figure 68.

79

MODELBUS
ModelBus User Guide

T e e

File Edit Source Refactor Navigate Search Project UMLEditor Run Window Help

(milhd HvQ Q- EH G @O S > 5l - [ERA= E§ &0 Team Synchr... [ModelBus Re...
[% Packag £ s Hierarc | = O |[&] library.uml 3 [tibrary.umiclass &3 = 0| B TaskList 23 =0
B&|e 7 Be f /D P Mlibrary.umi | &5 Palette » gAE-|Be”
4 = Demo-Example B3 <Package> Package E2 Package k@& & -
4 & models 7 <Element Import> Boolean - Find: b AL
4 (= class-models 5, <Element Import> String BookCategory H class 3 Uncategorized
& lbraryaml Element Import> UnlimitedNiatural st 1 Packsge
- L2 .
library.umiclass, i, <Element Import> Integer E Library operatiors (2] Enumerstion
& <Class> Library i literals .
(=) <Property> name: String name:: String Mystery DataType
=) <Property> writers : Writer writers : Writer Sciencefiction PrimitiveTy..
T <Literal Unlimited Natural> 1 onerations Biography (2} Constraint
0 <Literal Integer> 1 classes . ssociation |7
<Enumeration> BookCategory 8 Class
= <Enumeration Literal> Mystery
= <Enumeration Literal> ScienceFiction B intertace
= <Enumeration Literal> Biography © Attribute ~
B <Class> Writer & Operation o= Outline &% a
(5 <Property> property: String e Lrera B2
books =1 Enum Literal
B <Class> Book witers n outlin is not available.
(S <Property> title : String o Port
(= <Property> pages: Integer auther books (i Template
|auther %%
(=1 <Property> category: BookCategory Dl writer = Book Signature
o «hssociation> A_src_writers_associationEnd attributes 7 Element
attributes e
o “Association> A_src_books property String title: String Import
o shssociation> A_src_writers ot pages : Integer
operatiors cateory : BookCategory + / Association
/' <Association> A_author_books classes ameration,
[5] pathmap://UML_LIBRARIES/UMLPrimitiveTypes.library.uml classes » " Dependency
B pi//UML_PROFILES/Standard.profile.uml Generalizati.
2] pathmap://UML_PROFILES/Ecore profile.uml 4 Provided
2] pathmap://UML_METAMODELS/UML metamodel.uml il Interface
inRequired T
[2 Problems | @ Javadac (2 Declaration | =1 Properties 52 4" Search [BEEREE]
Property Value B
Info
derived false
editable true 3
last modified 17. Dezember 2009 1347:59
linked false
location [< { kspace\D I Yo
name library.umiclass

library.umlclass - Demo-Example/madels/class-models

Figure 68 The simple UML demo example

To describe the Team Synchronization perspective we will also need the following ModelBus
configuration:

e We have our local ModelBus repository installed as described in section 3.1. The
server has been started and is running. We have installed and defined two users for it:
“Admin” and “kde” (see section 9) — both at the moment have the right to do
EVERYTHING (mask=-1).

e We use two clients with separate local workspaces, one for user Admin and the other
for user kde (see section 8).

e The initial ModelBus.user model in the repository looks as shown in Figure 69 (with
the properties: passwords for “Admin”: “ModelBus”, for “kde”: “kdeModelBus” , for
“kde2”: “kde2ModelBus” and mask=-1 for all of them in the rule entry)

L& ModelBus.user 3

|7 Resource Set
a|l&l platform:/resource/model/ModelBus.user

4 4 Model
4 < User Admin
4 Rule.”
4 < User kde
4 Rule.”
4 < User kde2
<= Rule.”

Figure 69 Initial ModelBus.user for the scenarios

80

MODELBUS
ModelBus User Guide

11.1 Add a project to the ModelBus repository

To illustrate the functionality offered in the Team Synchronizing perspective we around a
little bit with the UML model created at the beginning of this section (see Figure 67 and
Figure 68).

We are registered as ModelBus user “kde” for the client we are using and work in the local
workspace “MB-Client-Workspace”. This is important because we will use a second client
with a separate local workspace later on in parallel.

As the first step we will create a shared project/namespace in the ModelBus repository (see
Figure 70):

1. In the context menu on the project folder in the Package Explorer select “Team” and
“Share Project”.

2. Astype select “ModelBus”.

3. Give it a name for the location in the ModelBus repository. This name (namespace)
must be unique within the repository. For this reason you can inspect the
namespaces already used in the repository available in the field under beneath the

location field.
r N
8 Share Project LB
Share Project .-
Select the repository plug-in that will be used to share the selected project. — 1
Select a repository type:
o CVS
= I ModelBus
4 [Damn-Examnla 2
P New »
Go Into
Open in New Window
Show In Alt+Shifts W »
Copy Ctrl+C
&2 Copy Qualified Name
T Paste CrlsV
K Delete Delete
Remove from Context Ctrl+Alt Shift+ Down & = @ == I:JC"'“'
Build Path »
Refactor Alts Shift+T » -
g2y Import... = -
5 Export... d
S Refresh £ FI!E System Relpusltmy .
Close Project 'Wﬁ—
Assign Working Sets...
Location: http://DemoExample|
Run As L httpi//localhost:3080/modelbus/seffices/R
Dabua s
Profile As 3
Team » Apply Patch... 1
Compare With » Share FIDH}-‘
Restore from Local Historv...
@ < Back lext > Fmis& | Cancel
L

81

MODELBUS
ModelBus User Guide

Figure 70 Create a shared project in the ModelBus repository

Next we will synchronize the content of the local workspace shared project with the content
in the ModelBus repository (see Figure 71):

In the Package Explorer we can see the folder structure of the local (shared) project.
Select the folder we want to synchronize and from the context menu invoke “Team”
and “Synchronize”. This will ask us to switch to the Team Synchronizing Perspective
shown in the next step. In our example we plan to put the whole project into the
ModelBus repository, which makes it easier for another user to get it working for him.
So we execute the “Synchronize” on project level to include all subfolders and files in
it. The “Synchronize” is not absolutely required but a good style of working. We at this
moment know that there is no conflicting content in the repository. But “by accident”
another client could have created conflicts. Using “Synchronize” first will discover this
conflict.

3. In the Team Synchronizing Perspective, which is offered automatically, we see all
material that has been newly created in the local workspace is not in conflict with
anything in the repository and can be committed to the repository. This is indicated
by the grey arrow with the plus inside it.

Java - Ecli =
File Edit Source Refactor Navigate Search Project Run Window Help
R~ FrO-Q - £ &0 Team Synchr... [ModelBgs Re...
EH O~ (- Nr=00 24
v v e v
f [# Packag 3 . Y Hierarc | = O = B[B Task List 2
=R 0@ &E~|B 4§
4 =% Demo-Example g
[8 Packagiiin T3 Hierarc | = O i B riodes Find:)
i i =R-SCR 4 (& class-models (&% Uncategorized
4 [Demo-Example @) library.uml
& model ¢ i
i = Socrazs_m :‘W ' |d] library.umiclass 1
o Into N
&) librg
i) libra Open in New Window
Shon N |2 Team Sﬂronizing - Eclipse Platform
Copy CtrieC - - - - -
& Copy Qualified Name File Edit Navigate Search Project Run Window Help
5 Paste Ctrl+V =
= =t o 4 [E
=l i 3~ Q- B~ g~ 5 (&Y Team Synchr... |
Remove from Context Ctrl+ Alt+ Shift+ Dowr > 4 % >4
Build Path » — -
Refactor Alt+ShiftsT » (Eﬁ?ynchromze & x
2 Import.. ModelBus Repository (Demo-Example) 4
5 Export..
Dert| =vd & B ,y-o.. Z
13 U ,) T
§ Refresh F5 = S = E
Close Project 4 =% Demo-Example
"RSSIgN WOKING Sete: 4 D settings
Run As » |Z® org.eclipse.core.resources.prefs
Debug As > D models
Profile A
ikl 4 4 "% models/class-models
Team 2 » Synchrdyjze I o &6 lib)
@0 library.um

@ library.umliclass

=% .project 3
N .

Figure 71 Synchronize local workspace and ModelBus repository

Within the next step we will commit it to the ModelBus repository (see Figure 72):

82

MODELBUS
ModelBus User Guide

1. In the Synchronize View of the Team Synchronizing Perspective select the
“DemoExample” and in its context menu the “Commit” operation.

2. When we switch to the ModelBus Repository Exploring Perspective and expand all the
entries underneath “DemoExample”, we will find all the material stored in the
repository.

&0 Synchronize £3

ModelBus Repository (Demo-Example/models/clas: File Edit Navigate Search Project Run Window Help
Dt =y & B o [&= & - L . 20
8 = k& v U | e %o () e QY B4~ £ &0 Team Sinchr... ([ModelBus Re... | &
4 % Den—~ = > =
4 GO Edit 4

G {1 ModelBus Repository £3 g8

Remove from View ¢ S| B ‘

Expand All i www.modelbus.org 10|

4 (= DemoExample 18
Upuete (> .settings 17
Comit 4 (= models15
rrw 1 4 (= class-models 15
OverwTTe |=] library.uml 14 2
ElorE Rerote [2] tibrary.umiclass 15

[2) .project18 }

Figure 72 Commit project to ModelBus repository

To check that it is really there, we go back to the Java Perspective and the Package Explorer
(see Figure 73).

1. In the context menu of our DemoExample project we select “Team” and the
“Disconnect” option to disconnect the project from the repository.

2. Then we delete the project form the local workspace.

3. Do not forget to select the “Delete... content ...”.

83

MODELBUS

ModelBus User Guide

T -
[Malay,

Debug As 4
Team 4 Synchronize
Compare With > Update
Replace With 4 Commit
Restore from Local History... 1 Apply Patch...
PDE Tool > =
oo Disconnect
C3~ F-rO0-Qr EHEY S S~
= ~ r
[} Packag &3 T: Hierarc | — O = Delete Resources L_@]g‘
Bk - ™ T ~ e file system?
4 (=% Den7 " . \
ew » -
4 =0 : .
4 Go Into E&Delete project contents on disk (cannot be undone) 3
Open in New Window
Show In Alt+Shift+W »
5 Copy Saie Preview >] l OK l [Cancel
52 Copy Qualified Name
% Paste CtrleV =
\ % Deletfy) Delete

Figure 73 Discontinue share and delete local project

Now we can again check out the content we just removed from the ModelBus repository (see
Figure 74). Go to the ModelBus Repository Exploring Perspective, select the “DemoExample”
and in its context menu the “Check out”. If you forgot to remove the project content from

your disk (step 3 in Figure 73), you will see a window like shown in Figure 75 and must select

to overwrite the stuff in your local workspace.

File Edit Mavigate Search Project Run Window Help
i Q- i A 5 59 Team Synchr... ([ModelBus Re...) &' Jo
S SR SR R
|| ModelBus Repository &3 =8
> ¢ | 8|6

> = www.modelbus.org 10

4 |= DemoExample?
v [.settings Mew b
[models 15

Check Out
.project 1 < E%

L4 Find/CHeck Out As...

= Came

Figure 74 Check out the project again

84

MODELBUS
ModelBus User Guide

= Override Project/Data Folder @
This project already exists in the workspace or there is
a data folder in the checkout destination
Select the project or data folder to overwrite, Please note, that all &
local data for the selected resource will be lost.
[[] Demo-Example Eclipse project

Select All_| | Clear Selection |

@ [OK] ’ Cancel]
L [y

Figure 75 Overwrite request by Check Out

Switching to the Java Perspective, expanding the project and folder and opening the UML
model and diagram will show us that we got it back unchanged (see Figure 76).

File gate Sea ject UML Editor Run Window Help

|wi F-O0-Q- BEEEG- &S S ~H oD [&Y Team Synchr... [Q ModelBus Re.

|2 Packag 52 T8 Hierarc | = O |(&] libranyuml 53 [tibrary.umiclass 22 = B[B TaskList 3 =8
B&le 7| - 13 f@w-lB&~

e D o
= Demo-Bxample 4 [0 =Package> Package [Package.
s

nt Import> Boolean Find: P oAl

=] BookCategory
attributes B kage
operatiors [®] Enumeration

DataType

% Uncategorized

writers
books

author

] writer
st

+ " Dependency
4 Generalizati,.| ||| A0 outine s not available.

Figure 76 Demo example project is back again

11.2 Producing and discovering conflicts

To produce conflicts we need two clients working with separate local workspaces at the
same time on the same stuff.

We are still registered as user “kde” in our client and work on workspace “MB-Client-
Workspace”.

We now start a second client and let it work on a separate workspace “MB-Client-Workspace
2”. We now open the preferences of it and set the ModelBus user (see also section 8 and
Figure 47). We use name “kde2” and password “kde2ModelBus” .

85

MODELBUS
ModelBus User Guide

Now we select the ModelBus Repository Exploring Perspective (maybe we have to do it as
shown in Figure 45).

Next we will check out the DemoExample as we did it in the previous section (see Figure 74).

At this point both clients have checked out the same version from the ModelBus repository
and we can create changes on the model and diagram that will produce conflicts afterwards.

Client 1 will create a new class “Reader” and associate it while client 2 changes the name of
class “Writer” to “Author”.

library.umiclass 23
[0 “library.umiclass &%

B3 Package
£ Package
&
) BookCategory [#] BookCategory
o attributes attributes
= Library operatiors =] Library operations
anr;)mcs M”"er‘l‘ltemb attributes literals
name : String ystery Mystery
writers : Writer ScienceFiction name: String fys QPF. .
operations Bicgraghy writers : Author ScienceFiction
classes operations Biography
classes
books
writers
author books books books
] { Book writs
£ writer s £ Reader -
" attributes = . books
3‘;;‘”‘-;5 title : String attributes author
property : String . =]
pages : Integer operatiors = Book
= Author

operations category : BookCategory classes ttribut
come goeatio attributes title : St:nq =
classes property : String pages: Integer
operations category : BookCategory
dlasses operations
classes

Modifications done by Client 1 o)
Modifications done by Client 2

Figure 77 Conflicting modifications done

Now we try to commit the changes to the ModelBus repository.

Client 1 starts (see Figure 78):

It calls the Team Synchronize for its whole project in the Package Explorer.

1. Two artifacts (library.uml and library.umliclass) have been modified in the local
workspace (grey arrow left to right) and can be check in without conflicts.

2. Invoke “Commit” for each of the modified artifacts (only shown for library.umiclass in
Figure 77).

3. After the commits we find new versions (see numbering) when we look in the

ModelBus Repository.

86

MODELBUS
ModelBus User Guide

&L Synchronize 53 = O[] tibrary.um

File Edit Diagram Navigate Search Project Run Window Help WoceBls Repoaitoryi(Demotxample)
o (TR i =2 | 1= it 7 = 3 Packag
9 QY B~ 5 [8Y Team Synchr... |E3 8" 7 =9 % !
0~ v &~ v v £ %H[E) .| =
Tak - . 4 2 Dempoebasapl
0 ” = . o 4 4 models/class-models
@ynchwnize 23 —Rm library.umlclass &2 [69 library.uml \
ModelBus Repository (Demo-Example) N @ librans umlelace
D=l ¢ E ‘ 3 Package Open
— Open With 4
2 % = :
e o | < Open In Compare Editd
a3 Pemo-ExampIe Edit >
4 (%} models/class-models
&® library.uml Synchronize
I@ library.umlclass | \ Remove from View
\ 1 | | ModelBus Repository &3 =8 Expand All
£ & ‘ - Update 2

{= www.modelbus.org 10 | t \ Comlht)
4 (= DemoExample 20

4 (= .settings17
|5 org.eclipse.core.resources.prefs 17
4 (= models 20
4 (= class-models 20
| library.uml 20
library.umiclass 19
[5) .project18 3

_ L/

Figure 78 Commiting modifications from client 1

Next client 2 will try. It also invokes “Synchronize”, but gets a conflict indicated. The red
arrow on library.uml indicates that there are conflicting changes between the content of the
ModelBus repository and the local workspace. The arrow goes in both directions what
indicates that there have been changes in the repository as well as in the local workspace
during the check out and the synchronize. In addition we see a blue small arrow (right to left)
on library.umlclass, the class diagram, which indicates that it has been changed in between in
the repository, too, but there are no conflicts.

Reflecting about these indicators, we can derive: there have been changes in the repository
concerning the UML model and the diagram while client 2 introduced his changes. These
changes concerned the model as well as the diagram. Since client 2 did not change the
diagram but only the model (rename a class), there are no “conflicts” concerning the diagram
but for the model there are changes in both directions.

Client 2 could decide to just discard his local changes, check out the modified version and try
again or try to inspect the conflicts more deeply using a compare editor. This will be shown in
the section 11.3.

87

MODELBUS
ModelBus User Guide

File Edit Diagram Mavigate Search Project Run Window Help

[3 - =
Tahoma g9 f | Ao - — '| | 'S}j v o -
£ Synchronize i3 = O [[2] library.umiclass &2
MadelBus Repository (Demao-Example) =
- E0 00| L e 52 Package

4 = Demo-Example
4 [models/class-models
&% library.uml
library.umlclass

writers
author
E Author
L - = H attributes
[Eﬂ Task Repositories &2 ﬁ’ broperty « String
@z Local i

4|

ﬂ, Eclipse.org

[I) N o= B A

Figure 79 Synchronization conflicts indicated for client 2

11.3 Inspecting the conflicts using a Compare editor

Additional help resolving the conflicts can be obtained by invoking the Compare Editor
(Figure 80). This is based on the EMF Compare (see
http://wiki.eclipse.org/index.php/EMF _Compare).

£" Synchronize &3 =8
ModelBus Repository (Demo-Example) =
-t~ 0 G Bl nEelE
4 1= Demo-Example
4 [P models/class-models

#% library.uml

librrary.u Open
Open With 3
Open II}Compare Editor
Edit 3

Figure 80 Invoking the Compare Editor

The Compare results for our UML model (library.uml) are shown in (see Figure 81). The UML
model version client 2 wants to check in is shown in the bottom right window, the one in the
ModelBus repository in the bottom left window. Expand the trees as far as you need them.

88

http://wiki.eclipse.org/index.php/EMF_Compare

MODELBUS
ModelBus User Guide

File Edit Mavigate Search Project Run Window Help

i R =R R R R R 5 Ef | E- Team Synchr... |

£ library.uml 72 =g

&) Structural differences B -

4 Tg 6 change(s) in model
4 =1 6 change(s) in <Package> Package
4 a 1 change(s) in <Class> Writer
m Attribute name: String in < Class> Writer has changed from Writer to Author
4 ;/ 2 change(s) in <Association=> A_src_writers_associationEnd
4 =5 2 change(s) in <Property> associationEnd : Property [0..1]
=+ < <eReferences » <Property> / Owner: Element [0.1] has been remotely added to reference subsettedProperty : Property in <Property> associationEnd : Property
£} < <eReferences » <Property> / Owner : Element [0.1] has been added to reference subsettedProperty : Property in <Property> associationEnd : Property [0.1]
5 «Class» Reader has been removed

a < Association> A_src_readers has been removed
a < Association> A_books_reader has been removed

< |

& Visualization of Structural Differences
Remote Resource Local Resource

[3 <Package» Package [o <Package> Package
————3
‘3;:', <Element Import> Boolean %1 <Element Import> Boolean
%7, <Element Import> String %7 <Element Import> String
?;T, <Element Import> UnlimitedNatural OT <Element Impert> UnlimitedMatural
%7, <Element Import> Integer %7, <Element Import> Integer
& <Class> Library & <Class> Library

[E] «Enumeration> BookCategory = <Enumeration> BookCategory

ert

./ <Mezociation> A_src_writers_associationEnd ./ < Mscociation> A_src_writers_asseciationEnd

./ <MAssociation> A_src_books
/ < Association» A_src_writers
/' <Association> A_author_books

./ <Association> A_src_books
./ <Association> A_src_writers
/# <Association> A_author_books

7 < Association> A_src_readers‘,
= <Property> src: Library
= <Property> readers : Reader

/" <Association> A_buuks_reader‘;
= <Property> books : Book
= <Property> reader: Reader

Differences | Properties Differences | Properties

Figure 81 Results of the Compare Editor invocation

The Compare Editor allows you to copy all or selected changes from the “left” to the “right”
and to propagate from one to the next change. Whether this is helpful for a specific conflict
or not must be decided individually. In our situation the UML model and diagram are two
separate instance files of meta-models. The compare editor therefore handles them
separately and therefore may create inconsistent model/diagram situations.

So mostly the compare editor will only be a helper to more deeply identify the conflicts.

11.4 Some explanations on the Team Synchronizing perspective

Within this section some features of the Team Synchronizing Perspective shall be
summarized.

89

MODELBUS
ModelBus User Guide

First of all we have the indication of changes and conflicts in the Synchronize view (see Figure
82):

e Blue arrow (right to left) indicates changes in the repository

e Grey arrow (left to right) indicates changes in the local workspace
e Red arrow (both directions) indicates conflicts

e Additional + in the arrow indicates additions

e Additional —in the arrow indicates deletions

In the Synchronize View you can select filters from the menu bar to only show changes in a
specific direction or conflicts. You can also invoke an operation there to merge all non-
conflicting changes.

£ Synchronize 3 =0

ModelBus Repository (Demo-Example) N library.umliclass

Fa

vl x4 ¢ B

— #® library.uml
5 » .2? o | &
@@ library.uml
4 = Demo-Example
4 % models/class-models o :
#© library.uml @0 library.um

[&® library.umiclass

Figure 82 Synchronize View and Arrow Symbols

Alternatively one can synchronize the changes between the local workspace and the
repository on an object to object basis using the commands in the context menu of the
object (see Figure 83):

e Commit: Copies the object from the local workspace to the repository with a dialog if
there are conflicts.

e Update: Copies the object from the repository to the local workspace with a dialog if
there are conflicts.

e QOverwrite: Copies the object from the repository to the local workspace without
asking.

e Ignore Remote: Copies the object from the local workspace to the repository without
asking.

90

ModelBus User Guide

M[]IJELBUS

|[Iibrary.umlclﬁ}sl

Figure 83 Synchronization Operations

Open

Open With

Open In Compare Editor
Edit

Synchronize
Remove from View
Expand All

Update

Commit
Owverwrite

Ignore Remote

91

MODELBUS
ModelBus User Guide

12. Locking Elements in the Repository

This chapter describes the possibility of locking elements in the ModelBus repository. This
always works with complete files and models as described in section 12.1. There exist
ModelBus adapters for Papyrus MDT and RSA and an adjusted Papyrus 1.12.3 version that
allows locking and unlocking for model elements as described in section 12.2.

12.1 Locking Files and complete Models

Assume the situation that more than one user want to work on the same files or models at
the same time. In this situation they can use the ModelBus repository, store their files and
models there and synchronize their work using the lock mechanism offered.

This shall be illustrated using a simple text file and a simple UML model within this section.

Assume the first user has created a project containing a simple text file and a simple UML
model as shown in Figure 84 and shared and committed it to the repository (see Figure 85).

(=

|_] Hello &3
=% I hello world!

[Package Explorer 2

= Testlocking
Hello
@) testuml

=

[% Package Explorer &2 8|/ [3) Hello &) testuml 23
=R-S - | K platform:/resource/TestLocking/test.uml
4 B0 <Package> UMLModel

4 3 Testlocking -
97 <Element Import> Boolean

Hello
&) testuml

o7 <Element Import> String

9, <Element Import> UnlimitedNatural

97 <Element Import> Integer

5—7: <Class> Class
pathmap://UML_LIBRARIES/UMLPrimitiveTypes.library.uml
pathmap://UML_PROFILES/Standard.profile.uml|
pathmap://UML_PROFILES/Ecore.profile.uml

Figure 84 Example created by first user

92

MODELBUS
ModelBus User Guide

= ModelBus Repository Exploring - Eclipse
File Edit Mavigate Search Project Run Window Help

ik Q- o 5 [[@] ModelBus Re... | &0
& < - ¥5 (oo <
|1 ModelBus Repository 53 =g

¢ Bl &

4 i[= TestLockingFiles 15!
project 14
=| Hello13
> =] testuml15

R TLE

Figure 85 ModelBus Repository view on the example

A second user with its own ModelBus client, username and local workspace checks out the
project (Figure 86) and probably wants to make some changes on the e.g. text files.

< ModelBus Repository Exploring - Eclipse
File Edit Navigate Search Project Run W

r9~ QY B8yl

z [% Package Explorer &2 = B[[£) Hello £3
| | ModelBus Repository i3 g =~ Yl bellc world!
= : l_ SACH =2 Testlocking
4 |Gt e ==—ra==Ax Hello
Bp New 4 @) testuml
Hi a9 c>§k Out
te
» Test1] J Fina/Check Out As...
& www. Copy

of Cut

Nactn

Figure 86 Second User Check Out

To prevent the (text) file from being changed intermediately he may set a lock on the text file
(see Figure 87 (1)).

93

MODELBUS
ModelBus User Guide

I3 Package Explorer = O Hello 2

= e Hello world!
4 1 Testlocking
—

&1 New »
Open F3
Open With »
Show In Alt+Shift+W »
Copy Ctrl+C
4 Copy Qualified Name
5 Paste Ctrl+V
¥ Delete Delete
Remove from Context
Mark as Landmark
Build Path »
Refactor Alt+Shift+T »
2 Import.
15 Export...
Refresh F5
Assign Working Sets...
Javadoc | [, Declaratic
Run As »
Debug As »
Team » Synchronize
Compare With » Update
Replace With » Commit
Modelbus » Apply Patch...
WikiText (. s
Unlock
Properties Alf+Enter Lock
= N 1
8
o = o o \
[Package Explorer &3 8|/ B Hello 22 [£ Package Explorer &2 = 8| [5) Hello £3
=B Hello world! & hello world!
4 | Testlocking 4 3 Testlocking
@ | Hello[locked] 2 & Hello[locked by kde]
@] testuml &) testuml 3

Figure 87 Locking a File

The lock will be indicated to the user who set it and is still able modify it with a small green
lock icon (see Figure 87 (2)) and to the other user(s) by a red icon (see Figure 87 (3)).

The lock can be released using the Unlock command (see Figure 88) by the user that initiated
the locking.

As you can see in Figure 88 another user has locked the UML file intermediately indicated by
the red lock icon.

94

ModelBus User Guide

MODELBUS

% Package Explorer &2 =08
ER=S =
4 = Testlocking
&) Hellallnclad
i te New
Open
Open With
Show In
=| Copy

B Copy Qualified Name
5 Paste

¥ Delete

Remove from Context
Mark as Landmark
Build Path

Refactor

Import...
Export...

Refresh
Assign Working Sets...

% b

Run As
Debug As
Team
Compare With
Replace With
Modelbus
WikiTesxt

= |

=] Hello &2
Hello world!
»
F3
»
Alt+Shift+W »
Ctrl+C
Ctrl+V
Delete
Ctrl+Alt+Shift+ Down

Ctrl+Alt+Shift+Up

L3
Alt+Shift+T »

F5

- v v v w v ¥

Figure 88 Unlock a File

12.2 Locking Model Elements in the Repository

@ Declaration m N

Synchronize
Update
Commit

Apply Patch...

Unl?{k

The following section will explain a specific feature implemented in ModelBus adapters for

Papyrus MDT and RSA in combination with the ModelBus Repository.

Two users working simultaneously on the same model may synchronize their work using the

locking and unlocking of model elements in the repository.

One of the users may invoke the lock operation on a model element (see Figure 89). The

result will be indicated to all as shown in Figure 90 by a green lock symbol to the user who

has set the lock and with a red lock symbol to the others. In addition the text “locked” and

“locked by ...” will be shown which will also show the name of the user that initiated the lock.

The unlock operation (see Figure 91) will release the locks.

95

M[]IJELBIJS

ModelBus User Guide

its ~ H &

[Packa | 2 Model 2 |2 Plug-i

¥ Ea model

¥ 4 clas
vt ow
L
* £ cla:
vt oow
[=0

Bg Diar

F#ORE S

Generate C++ code
Tracing

Validation
Qompass Designer
New SysML Child
Export

Import

New Child

New Diagram

New Table

Delete

Rename

Undo

6 BT IEE % N W e
o O - N B

Charter 9 B

| ~? *model.di &

E class1
'

, + Operation1()

b

b

b

4 E Class2
+ '+ Propertyl: <Undefined> [1]

»

»

Delete
F2
Ctrl+Z

Ctrl+C

Modelbus v Lock N

Figure 89 Locking a Model Element

e e A R R TEAB W R BT S
todm e @ | Bitst Charter 9 B
[# Packa |B Model 8 ZPlugi = O ~# model.di &
E#EFABlRBEE ¥
¥ B3 model
¥ [class1[locked] Cdas! @&

¥ t ownedOperation (1)
> @ Operationi[locked] h
»] class2
Bg Diagram NewDiagram

4 + Operatior g |

i

E Classz

[= + Propertyl: <Undefined> [1]

LRI @ | Bits

[# Package Explorer & Model Explorer & |2 Plug-ins

feiB o rarive

e @A PR 2EAE B9

= g “? model.di 2

= Ig.‘ W OB v

¥ &2 model
¥ [class1[locked by User1]
¥ t ownedOperation (1)
» g Operationi[locked by User1] %
¥ O class2
¥ t. ownedAttribute (1)
¥ =3 Propertyl
B3 Diagram NewDiagram

Figure 90 Lock result indication

96

Hclass1 g

& + Operatio g |

E classz

g + Propertyl: <Undefined= [1]

ModelBus User Guide

M[]IJEI.BIJS

iy @ 8 7 kR RETEARE D T e

b f;

LERECTE =) =ﬁ'3

Bitstream Charter 9 B

I

¥ B2 model

v [class1
¥ t owne

> @ Op

v | classz
¥ ¢, owne

b g2 Pre

Bg Diagre

[# Packa | % Model 22 |22 Plug-i

E#QABBE g

Generate C++ code
Tracing

Validation
Qompass Designer
New SysML Child
Export

Import

New Child

New Diagram

New Table

Delete

Rename
Undo
Redo
Cut
Copy

Paste

Enable write

Modelbus

npare 2 UML Elements

~? model.di %

JClassl @

v
+ Operatior g |

3

3

b

3

H Class2 &
" Propertyl: <Undefined> g |

3

3

Delete

F2

ctri+C

Unlock

Figure 91 The Unlock Command

97

MODELBUS
ModelBus User Guide

13. The ModelBus Repository Exploring Perspective

The ModelBus Repository Exploring perspective allows inspecting the content of the
repository. A screenshot of the perspective is shown in Figure 92.

[File Edit Navigate Search Project Run Window Help -]
| Q- = b he (=g © £0 Team Synchr... a’Java
|| MedelBus Repository 52 =08 =

& 5|

> = www.modelbus.org 10
4 [= Demobxample 20
4 [= settings 17
org.eclipse.coreresources.prefs 17
a [= models 20

4 = class-models 20 él History | |5 ModelBus Properties |7‘"E': ModelBus Repository Browser 232 q§h =8
1= library.uml 20 http://DemoExample/models/class-models
library.umlclass 19 Name = Revision Last Changed At Last Changed By Size Has Properties Lock Qwner
B project18 = 20 060110 00:00 kde
=l library.uml 20 06,0110 00:00 kde 9112
I\brary.umlclas; 13 06.01.10 00:00 kde 26479

(nkd

Figure 92 ModelBus Repository Exploring

The ModelBus Repository Perspective can also be used to navigate through a model (in a tree
view). You can select the types to browse in the preferences (see Figure 93).

= Preferences =
type filter text ModelBus Repository Browser =) - v

ﬁel:elal ModelBus Repository Browser Configuration

n - o =87/
cDO Set model types to browse: || MedelBus Repository & =
Ecore Tools Diagram uml fi o> S|l B|G&
EMF Compare seore 4 (= TestlockingFiles 15
Help .

.project 14

Install/Update - :elljo 13

Java
Model Validation
ModelBus User

4 test.uml15
4 B0 <Package> UMLModel

N

Dependencies 97 <Element Import> Boolean
ModelBus Repository Browser 3;;', <Element Import> String

Notification Add Extension ?':;. <Element Import> Unlimited

Plug-in Development : R 3;; <Element Import> Integer
Run/Debug SIROVE e £ <Class> Class

Tasks (= Testl-MRS

Team

Usage Data Collector (= www.modelbus.org 21

[R:slnre Defaults Apply

e/

@ ke [OK] ‘ Cancel

98

™ MODELBUS
ModelBus User Guide

Figure 93 Browsing Models in the Repository

99

MODELBUS
ModelBus User Guide

14. Notifications

The ModelBus includes and offers notification service. This can be used to send notifications
between services and to clients. The notifications are displayed in a specific view in a client
(see Figure 94). In the example shown, the successful update of the repository as a result of
a commit request is displayed.

[£! Problems | @ Javadoc @ Declaration | <" Search | =l Properties |] Motification View £3 @v =
! Model Type Time
http://DemeExample/models/class-models/library.umlclass update 07.01.201013:37:3...
http://Demobxample/models/class-models/library.uml update 07.01.2010 13:37:3...
A

Figure 94 The Notification view

Within the Eclipse preferences exists a section for the notifications in the ModelBus
subsection (see Figure 95). Here you can select that you want to receive notifications
concerning open models only and / or specify a filter (regular expression) for the notifications
to receive.

T ——

type filter text Notification PrmT

> General
- Ant

ModelPlex Notification Configuration
Netification enly on open models

> ATL
. [Motification POP-UP startup preference
Buddies PP
- CDO regex filter *

> Ecore Diagram

> Ecore Tools Diagram
EMF Compare

> Help

> Install/Update

> lava

> JET Transformations

> Model Validation

ModelBus %
Natification
User

1Y

> Plug-in Development
> Run/Debug

> Tasks

> Team

> UMLZ Diagrams

> Usage Data Collector

[Restore Defaults] l Apply]

@ [ok][canca |

Figure 95 Notification Preferences

100

MODELBUS
ModelBus User Guide

15. Dependencies

The ModelBus provides dependencies support. That means, if you check in a model all its
referenced models and meta models are automatically checked in, too. Furthermore, the
incoming references of a model or a model element can be displayed in the Dependencies
View.

Within the Eclipse preferences there is a preference page for dependencies support (see
Figure 96) where you can enable “check dependencies” and declare the model extensions
you want to support. “Check dependencies” is disabled by default. In Figure 96 we have
enabled the dependencies support for UML models.

The Dependencies View can be opened via the “show Dependencies” action, which can be
selected in the context menu of a model file or a model element in the submenu
“ModelBus”. Figure 97 shows incoming references for a model element. You can see
information about the referencing object (URI, name, type). Figure 98 shows incoming
references for a model.

. Refactor Navigate Search Project UserH == Preferences uﬂléjt
i~ 'S
FT-O-Q~ #e- 4| | type filter text Dependencies @~ Ty
{2 Package Explorer 53 =8| § General Y -) -
= | - E Ant Dependencies Configuration
B>l 0o [¥] check dependencies
= model E Tools Di Modeltypes:
=TS core Tools Diagram
& Default.profile.uml EMF Compare uml
#] Deployment.profile.uml Help
#] ProfileBase.profile.uml Install/Update
&) ServicesAndDataTypes.uml Java

#] SysternCapabilities.uml Model Validation
#] SystemTypesAndInstances.uml _5 ModelBus User
&) Viewpoint-SystemcapabilityAnalys % Dependencies £
#] Viewpoint-SystemNet.profile.uml Interactive Modeling
ModelBus Repositor

#] Viewpoint-SystemServices.profile.
Naotification Add Extension

MoDisco

Papyrus

Plug-in Development
Run/Debug

Tasks

Team

Remove Extension

UmlMessage

UmlProperty

UmlState -
4| 1 +

@:l ’ QK] ’ Cancel]

’ Restore Defaults] [Apply]

Figure 96 Dependencies Preferences

101

™ MODELBUS
ModelBus User Guide

||—_z_\ Problems (@ Javadoc (@ Declaration (ﬁ Properties (QD Synchronize (m Dependencies View &2

Referencing Objects Name Type
thttp://TIS/SystemCapabilities.uml2_aHxlAln_Ed209eeaBUdBQ: AircraftOperator http://www.eclipse.org/uml2/2.1.0/UML#//Property
http://TIS/System Capabilities.um#_wU0loKTZEd20aqkPc_W7qQ AircraftOperator http:/fwww.eclipse.org/uml2/2.1.0/UML#//Property
hittp://TIS/System TypesAndlnstances.uml#_T-CGwMIDEdSFLuRY 1af8Q aircraftinfoProvider http://www.eclipse.org/uml2/2.1.0/UMLZ//Port

hittp://TIS/System TypesAndlnstances.uml#_Kl4roMIDEdBFLURY_laf8Q SystemProvidesinterfaceRealization http://www.eclipse.org/uml2/2.1.0/UML#//InterfaceRealization

Figure 97 Dependencies View for a Model Element

||—_3_\ Problems (@ Javadoc (@ Declaration (ﬁ Properties (QD Synchronize (m Dependencies View &2

Referencing Objects MName Type
thttp://TIS/SystemCapabilities.uml http://www.eclipse.org/uml2/2.1.0/UMLE//Madel
http://TIS/ SystemTypesAndlnstances.uml http://www.eclipse.org/uml2/2.1.0/UMLE//Madel

Figure 98 Dependencies View for a Model

102

MODELBUS
ModelBus User Guide

16. Fragmentation

You have the ability to divide your models into several fragments. Select the entry “control
fragment” in the submenu “ModelBus” in the context menu of a model element (see Figure
99).

['] ModelBus Repositery i3 =08

>f|lBlcak
» (= Testl-MRS 2086
» = schemas 2184
> (= www.modelbus.org 2089
4 [Fragmentation 2270
4 = My.uml 2268
4 5 <Model> TestModel
- |[E0 <Package» Paclkancl
. B3 <Package> F Modelbus 2 Show Dependencies
> = UML_PROFILES 2229
> (= www.eclipse.org 2265
+ (= UML_METAMODELS 2255 Eontiniiiagment
> (2= TIS 2262
> (= UML LIBRARIES 2260

uncontrol fragment

copy URI

Figure 99 Control Fragment in the Repository View

A repository wizard opens where you have to choose the destination namespace for the
fragment file. Enter the filename and click on the button “Finish” (see Figure 100). Then you
have to synchronize your project. The previously created fragment file is seen in the
Synchronize View and you have to update your project. Now you can work on the fragment.
After you have committed the changes, the fragment can be uncontrolled again by selecting
“uncontrol fragment”.

= Fragment Location Selection I l o xT

Select a destination folder

Operation will be applied to rescurce: http://Fragmentation/My.uml#//Packagel

=i

=

(A ROOT 2270
(= Fragmentation 2270
= schemas 2184
(= Testl-MR5 2086
(= TIS 2262
(= UML_LIBRARIES 2260
(= UML_METAMODELS 2255
(= UML_PROFILES 2229
= www.eclipse.org 2265
(= www.modelbus.org 2089
(A ROOT 2270

Fragment File: My.fragment.umnl

@) [Finish] [Cancel]

Figure 100 Choose Destination Folder and enter the File Name for the Fragment

103

MODELBUS
ModelBus User Guide

17. Interactive Mode

ModelBus offers an interactive mode that makes it possible to change models interactively in
near real time and to commit model changes incrementally. There exists an “Interactive
Modeling” preferences subsection within the ModelBus Preferences section (see Figure 101)
where you can enable three different checkboxes. The “Interactive Modeling” checkbox
enables the interactive mode in general. Before you can use the interactive mode, you have
to ensure that the model has been committed to the repository with all its dependencies
(see section 15).

= Preferences L@l&]
type filter text Interactive Modeling =Y Y

ie:eral ModelBus Interactive Modeling Configuration
n

ATL [¥] Interactive Modeling

cDo | Commit changes after save default: commit changes after each transaction

Data Management | Automatic lock and unlock of elements

Dynamic Languages

Ecore Tools Diagram

EMF Compare

Help

Install/Update

Java

Java EE

Java Persistence

JavaScript

Model Validation

4 ModelBus User

Dependencies
Interactive Modeling L]
ModelBus Repository B
Notification

Figure 101 Interactive Modeling Preferences

To enable the interactive mode for your model, the model has to be opened in an editor. If
the model is shared and if the editor uses transactional editing domains, the “Interactive
Modeling” button in the toolbar is enabled (see Figure 102). When the button is activated,
you are ready to work interactively. After each change transaction, a change set is committed
to the repository and clients that work on the same model and have enabled the interactive
mode are updated automatically. The second checkbox enables commits on save. It can be
enabled only if the first checkbox “Interactive Modeling” is enabled. In the commit on save
mode your changes are committed in a batch after saving the model. The third checkbox
enables automatic locking and unlocking of model elements to change. This can only be used
in combination with the commit on save mode. When you start to change your model, the
current changed model element and all its children are locked and cannot be changed by
other developers. After saving your model, all locked elements are unlocked again.

104

™ MODELBUS
ModelBus User Guide

§ = Java - PapyrusDemo/ServicesAndDataTypes.di - Eclipse I [=/ E g
File Edit Diagram MNavigate Search Papyrus Project Run Window Help
0~ P-O-U- O FE- £ [ET5m0a) %5 Debug
e g B i | A v By v - = vl : | Bfw B v vy . ~J Papyres [ModelBus Re...
B ies s~ qi? Hr 2-hBRLtEBETesREEER @
B~ 5 v % -

-
Interactive Modeling

Figure 102 Interactive Modeling Button

105

PART IV

Orchestration

MODELBUS
ModelBus User Guide

18. Orchestration

ModelBus operations and services based on ModelBus are specified as web services. Their
interfaces are described by a WSDL and can be invoked using webs service mechanisms. This
offers the chance to use all well-known and proven methods and tools for orchestration in
the web services area in the context of ModelBus orchestration, too.

In addition the ModelBus repository emits notifications whenever its contents, e.g. a model,
has been created, updated or deleted.

Both features are very useful to automate workflows in the model based development
environment based on ModelBus.

In the web services area at least two approaches for orchestration exist:

e BPMN (Business Process Modeling Notation), a graphics based modeling approach for
business workflows, defined in an OMG specification (http://www.bpmn.org/)

e BPEL (Business process Execution Language), an XML based language specified by
OASIS (http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html)

BPMN is a graphical notation which is not directly executable, meanwhile BPEL workflows
can be executed but there is no standardized graphical representation for them.

Some BPEL tools have invented their own graphical representation. On the other hand BPMN
includes the specification of a mapping from BPMN to WS-BPEL.

There exist not only tools that allow the specification of workflows in BPMN or BPEL
separately but also tools that allow the graphical modeling of workflows using BPMN than
generate BPEL from it, deploy it and then execute it using a BPEL engine.

For one of those tools exists an open-source edition, that shall be used in the context of this
user guide to further on illustrate the orchestration in the context of ModelBus
(http://www.intalioworks.com/products/bpm/opensource-edition/).

The Intalio tool consists of two parts:

e Intalio Designer is used to model the workflows using BPMN, then augment them
with information from the web service specifications (WSDL) used and deploy them
to an execution environment.

e Intalio Server is the environment the BPEL based workflows are deployed to and
executed in.

109

http://www.bpmn.org/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html
http://www.intalioworks.com/products/bpm/opensource-edition/

MODELBUS
ModelBus User Guide

The Intalio tool also includes an extension for BPEL that supports human interactions
(BPELAPEOPLE), which is also specified by OASIS.

The principle approach of defining a workflow starting with BPMN is mostly the same in
different tools supporting it:

e Specify the workflow using BPMN

e Add information about the service operations, notifications, data used based on the
WSDL

e Deploy the executable workflow to a server

e Executeit

A small example should illustrate the use of a very simple workflow in the context of
ModelBus based services. The workflow should illustrate the combination of a model editor
that changes a model, model repository to store it and a transformation tool (QVTService) to
execute a transformation if necessary.

Assume the following situation:

e A modeling service (e.g. some editor) is doing some changes within a specific model.
It stores the updated model to the repository.

e The Repository will emit an updateModel notification.

e Anybody interested in this event might receive it and react on it.

o A workflow in an orchestration tool will react on the update notification and
depending on some condition (e.g. if it is a specific type of model) invoke a
transformation service (QVT Service).

e |If the transformation is invoked, it will transform the model (from the repository to
the repository.

18.1 Modeling the basic workflow with BPMN

The resulting basic BPMN diagram looks quite simple (see Figure 103):

e There are 3 separate pools representing the separate domains of the orchestration
workflow, the ModelBus repository and the transformation service. For reasons of
simplicity we did not include the model editor which would have been the initiator for
the update of the model in the repository.

e We have two tasks and one sub process: the Repositorynotification task sending the
notification about the model update; the transform task being used to execute the
transformation in the QVT service and the Transform task / sub process in the
workflow that invokes the QVT transformation.

110

MODELBUS
ModelBus User Guide

e One start event in the workflow receives the updateModel notification and starts the
workflow.

e The “exclusive data-based” gateway decides whether the transformation should be
executed or not.

e Two end events mark the end of the workflow execution: one for the successful
execution and one in the case of an error (the one with the flash symbol in it).

e An intermediate/boundary event is used to catch exceptions during the
transformation at the boundary of the sub process.

e Flow connectors (solid arcs) represent the flow inside a pool while message
connections (dashed arcs) represent the sending and receiving of messages between
pools.

€

Crechestration Workdlow

o .
B [;‘
1 @

%epnsnn ryMotificationsupd ateModel

transfonm

f————————————— =7

Figure 103 The Basic BPMN Diagram

The orchestration workflow still shows some error and warning symbols: the decision for the
gateway has not been specified yet and also the details for the messages received and send
are not specified. This will be described in section 18.2.

In addition we will have to define one of the exit paths of the gate as a default condition. This
path will be taken, whenever no other path qualifies. This is done by setting the “Default
condition” in the properties view for this path to true.

111

MODELBUS
Eﬂ ModelBus User Guide

First the possible modeling elements for BPMN should just be sketched. For a complete
specification of BPMN see the official OMG document at http://bpmn.org/.

The basic shapes (see Figure 104) allow modeling the separate domains using pools and
lanes, offer simple tasks or tasks executed in a loop and sub processes (simple and looping)
which represent “sub workflows”. Connectors represent the flow inside a pool (flow
connector) or between pools (message connection).

[Basic BPMM Shapes a4
s E]
Texk -E
Annotation Task Looping Task
L
a--f It
— ‘m
Message Associakion
Flows Conneckor Connection
] 8
B 75
Pool Sub-process Looping Sub-
process
Lane Yariable

Figure 104 Basic BPMN Shapes

Events distinguish between start, intermediate and end events (see Figure 105):

e Start events mark the starting point of a workflow. The execution can be initiated
receiving a message or signal, some timer, some rules specified etc.

e Intermediate events mark the position between start and end of a workflow where
the reception or sending of an event is possible.

e End events mark the end of a workflow. They may signal whether the execution was
successful or not by issuing a specific event.

A special type of event is the compensation. This is used to realize a transaction like
execution within workflows. Normal transaction mechanisms are not always useful in the
context of business workflows since there duration could be hours, or even days or months.
Therefore the concept of compensation actions exists. For every subpart of a workflow (e.g.
specified as a sub process) that should probably “rolled back” should have the specification
of a flow of tasks that undo (compensate) the work of it explicitly. Those could start at an
intermediate event at the boundary of the sub process similar to the error event in Figure
103. The unsuccessful sub process will then end in a compensation end event. This will be
caught at the boundary of sub process and continue execution there undoing the actions of
the sub process.

112

http://bpmn.org/

™ MODELBUS
ModelBus User Guide

e @

=1

Figure 105 Event Shapes

Gateways are the points in the workflow to branch and join the flow in a controlled way.

[ateway Shapes

Figure 106 Gateway Shapes

18.2 Basic BPMN diagram with interface descriptions

Up to now the BPMN workflow knows that there are tasks that do something in different
pools, decision points, messages etc.

It does not know details about the messages exchanges, what ports/operations are
realized/implemented by what tasks what exactly is the decision in a gate etc. Due to that no
fully executable BPEL workflow can be generated. The information kept in the WSDL can be
used to augment the BPMN diagram. This will be illustrated here in the context of the Intalio
tool, but works in a similar way with other tools combining BPMN and BPEL. It might be that
they do not use “drag and drop”, but require you to set some additional properties for the
modeling artifacts in your diagram manually.
113

MODELBUS

ModelBus User Guide

As a first step the necessary WSDLs and XSDs have to be added to your project. You can do

this with “drag and drop” of the files or by using import.

Figure 107 shows how to use the RepositoryNotification WSDL as first step:

e Expand the WSDL and drag and drop the updateModel operation from the Process
Explorer to the RepositoryNotification/update task in the BPMN diagram (ModelBus

Repository pool).

e Select “Provide operation ‘updateModel ...

provide the operation).

4

when you are asked (the task will

e Drag and drop the updateModelRequest from the updateModel operation (WSDL in

the Process Explorer) to the message going to the start event in the Orchestration

Workflow.

=N

L Palette .

& process Explorer £

+ r} ExceptionhandlingWithBusinessRules
® 2 GetTime
=25 ﬁdBWokawaxample

+ (@ build

+|S| ModelBus.xsd

= 22 qvtservice.wsdl
= B Quiservice
= [@) QvtServicePort
+ 4@ transform
+ 0 QutServicePortType
@ QvtServiceSoapBinding
+ B) http:/jdescriptor.qut.transformation.modelb

+ 2@ Repository.wsd|

= 22 RepositoryNotification.wsdl

= 53 RepositoryNotification
= |@ RepositoryNotificationSOAP

+ {@ createModel

4@ deletemodel
= @ updateMo@Wé
* g; updateModelReque

€ RepositoryNotification
@ RepositoryNotificationSOAP
+ ug http:/jwww.modelbus.org/RepositoryNotific:

& UpdatedModel.bpm
+ |S] xmimime.xsd
+ L:'" PeopleActivity
3 TestForms
+ 2 TestMB

&4 UpdatedModel.bpm &2

W

Orchestration Workflow

T
'
|
|
|
|
|

epositoryNotification/updateModel

|
|
|
|
|
|
1
|
|
|
|
|
|

Transform /

Figure 107 Assigning the Information from the RepositoryNotification WSDL

For the transform task in the QVT Service pool another approach shall be illustrated.

Assume we started with modeling the BPMN workflow in the Orchestration Workflow pool

only without filling up the QVT Service Pool. The situation could look similar to the one

shown in Figure 108.

114

MODELBUS
ModelBus User Guide

?caj Process Explorer &3 -2 Palette = 0| & *Updatedtodel.bpm &7
25
t‘? ExceptionhandlingWithBusinessRules
2 GetTime
=] Lé MEWorkflowE:xample
@7 build
@ ModelBus.xsd
(=2 gukservice wsd)
= @ CQtService
= QvkServicePort
@ transform
o QutServicePartType
@& CutServiceSoapEinding
E http: /{descripbor.qut . transformation.modelby
22 Repository.wsdl %
=29 RepositoryNatification wsdl T
= & RepositoryMatification :
= RepositoryMotificationSOap |
|
|
|

=4

o

Crehestration Waorkflow

@ createModel
@ deleteMode!

=] @ updatetode!
@] updateModelRequest F
o RepositoryMotification epositaryMotificationfupdateModel
& RepositoryNotificationsOaR
E hittp: {fewa modelbus, org/RepositoryMotifice
&F| UpdatedModel .bpm
@ wmlmirne. xsd
g FreopleActivity
128 TestForms
2 TestME

< b4
9= outire 52 EE' Data Editar Pg-=0
|
4 E
I T

Figure 108 Integrating the qvtservice.wsdl

Instead of first creating a BPMN task we may drag and drop the transform operation from
the qvtservice WSDL to the QVT Service pool (see Figure 110). This will ask as whether it
should create a single task for the operation (see Figure 109 (1)) or two linked task connected
by a flow representing the receive and reply separately (see Figure 109 (2)). We will select
the single task version.

@) %

transform_receie ransformResponse_reply

transfom

1 2

Figure 109 Single or Separated Tasks

115

M[]IJELBUS

ModelBus User Guide

B process Explorer 12 7 Palette

=S ExceptionhandiingwithBusinessRules

@ 12 GetTime

2 2 MBWorkflowExample

[l buid

&S] ModelBus.xsd

= 22 qutservice.wsdl
= EJ Quiservice

= @ qutserviceport

=l

= O & *updatedModel bpm £

1R v

]

Workflow

sdl oper ation “gnsform” bound to portf*OviServicePort” in service "QutService']

I G} transformR
&3 QuiServicePort Type
@ @ QutserviceSoapBinding

http:fjdescriptor.gut.

se

4
& &) rio:
(& 22 Reposkory.wsdl
=242 RepositoryNotification. wsdl
=] RepositoryNotification
2 [@ RepositoryNotificationSOAP
4@ createModel
42 deleteModel
=42 updateModel
& &) updateModelRequest
& €3 RepositoryNotification
® @ RepositoryNotificationSOAP

-8

® %) deb
& UpdatedModel,bpm
@ (8] xmimime. xsd
12 PeopleActiviy
@ 2 TestForms
@ 5 Testhe

<

52 outline 2 [Data Editor

\

ﬁ\'c.wde operation transform’ bound to port 'QvtServicePort’ inside service ‘QutService', (single task)

L, thwoke operaton twansform bound to port ‘QutServicePart! inside service ‘QutService'.

fa Provide operation ‘transform’ bound to port ‘QutServicePort! inside service 'QutService!
”e

Figure 110 Creating the Transform Task by Drag and Drop from the WSDL

Drawing the message flow connections between the transform task in the Orchestration
Workflow and the transform task in the QVT Service is done with the normal BPMN modeling
shapes but will automatically assign the request and respond messages of the transform

operation. The resulting diagram is shown in Figure 111.

116

MODELBUS
ModelBus User Guide

\-L‘a_' Process Explorer 28 L& Palatte = 0| & *Updatedmodel.bpm £2

==

= ExceptionhandlingWithBusinessRules
12 GetTime
=) Lé MBWorkflowExample
&5 build
(8] ModelBus, xsd
=2 gutservice.wsdl
= @ QutService
= CwkServicePork
= {? transform
@] transform
% transformResponse
0 QutServicePortType
& QutServiceSoapBinding m—
E http: fidescripkor .gvt, transfarmation.maodelby \
24 Repository wsd| :
= 22 RepositoryNatification. wsdl |
|
|
|

@
[J

Transfomm

Orchestration Workflow

= @ RepositoryNotification
= RepositoryhotificationSOap
t@ createModel
{E@ deleteModel F

=] ﬁ? updatetods! epositorytlotification/update Model g A
I
I
I
I
I
I
T
|
I
I
I
I
&L

@] updateMadelrequest
0 FepositoryMotification
& RepositoryNatificationsoap
E http: junaw . modelbus . org/Repositoryhotifice
& UpdatedModel.bpr
(8] smlrnime. xed
= Peaplectivity
=2 TestForms
52 TestME

F3 S transfamm
B - . = E

5= outine 2 [Data Editor =

PP g ‘

Figure 111 The final BPMN Diagram augmented with the WSDL Information

The diagram still contains a warning marked at the decision gateway and errors on the
outgoing flows. The actual decision is not defined sufficiently.

18.3 Mapping data and using variables in the workflow

There are at least two places where we need to have access to the data in the workflow:

1. To describe the decision to be made in the gateway and
2. Tosend and receive info to and from the transform operation in the QVT service.

We got variables introduced to our BPMN workflow by assigning operations from the WSDL

to our message connections.

The first are introduced by the Repository Notification operation updateModel (see Figure
112): the two parameters of the updateModelRequest received by the start event in the
workflow.

117

MODELBUS
ModelBus User Guide

e e g
=28 RepositoryMotification. wed|
= @ RepositoryMotification
= RepositoryhotificationSOaP
ig’? createModel
;5@ deleteMadel
= {E@ updateModel
= Q] updateModelrequest
= % parameters
= (8] modellri
abc skring
E=-[&] userhame
ubc string

Figure 112 Repository Notification WSDL

These will be used in the decision. If the modelUri ends with “.um/”, that means it is an UML
model, the transformation shall be called.

Within Intalio Designer the “Mapper” view is used to connect the variables. Selecting the
decision gateway, opening the Mapper the request parameters are shown in the left column
(data sources). On the left we see the condition and in the middle column we will specify
how to build the decision. This is done graphically in Intalio Designer.

The mapping for the decision is shown in Figure 113.

Create
Operators connectors

/

- 2 —— = et — |

lLProblemsJE:JMapperEZ‘ QPmpewtiesI (] —b| - ||1D[jtvév:i o 7 =T

condition for [GatewayDataBasedExclusive - Transform]j condition for [GatewayDataBasedExclusive - EventEndTerminate] \

B B $repositoryNotificationUpdateModelReqy ————— condition 7
= [e] modelUri

abe text: string ————— _____———%__
= (8] userMame string) |
abc text: string

?_,‘ $tnsTransformMsg.parameters

ends-with()_}/
Fouml” 'F—*_‘—__—r__'

J

Figure 113 Data Variable Mapping for the Decision

For the transform request the situation is similar except that we have to assign data to the
request parameters. Most of the parameters are constants. The modelURI! is just passed
through.

118

™ MODELBUS
ModelBus User Guide

] Tasks | (21 Problems |1l Mapper 23 = Properties| & Progress |G~ 100% v - e 3p- T T F

assign

= ¥ $repositaryhiatificationUpdateModelRequestisg. parameters -~ $tnsTransfarmMsg.parameters 2 B
E B modelri default initialization E=

[&] userhlame

argo[7] [e]
argl[?] [e]
argz(7] [el
arga(7] [el
argd[?] [e]
args[?] [e]

| “hitp: /fwww.avl comftransformation/eastadizinmotion, qvt"

"eastadZhre

| "https . 2wl comfmetamodelieatodel ecore” |

| “http: . vl comfinmotion/result saMadel” ‘

Figure 114 Data Variable Mapping for the Transform Operation Request

18.4 The generated executable BPEL workflow

From the BPMN workflow an xml file with the executable BPEL workflow will be generated.
With the Intalio tool this file normally is complete and will not have to be touched. The
following sections should only give some glimpse into it to give an impression of the
correspondence between the BPMN and the BPEL workflows.

Tree View | XSL Ovtput

version="1.0"

encoding="UTF-8"

http://docs.oasis-open.org/wsbpel/2.0/process/executable
http://docs.oasis-open.org/wsbpel/2.0/varprop
http://docs.oasis-open.org/wsbpel/2.0/plnktype
http://schemas.xmlsoap.org/wsdl/

1/XMLSchema

ration_Workflow
1/ModelBus_Repository

ion.modelbus.net/
Service

odelbus.org/RepositoryNotification/
8/namespace

cScope
sublang:xpath2.0

¢
w
I
o
4
»
Q
%
4]
™
o
o
¥
oo

-@-@-5-F-F

J bpel:sequence

+ bp]
il) 2
=40 boel:condition ends-with(string ($repositoryNotificationUpdateModelRequestMsg.parameters/modelUri/text()), ".uml"™)

=2 bpel:scope
& bpmn:label SubProcess
0, SubProcess
_Sm3mAExSEd-NKSWhJgRx1w

3

) bpel:sequen
+---J) bpel:assign
#--C) bpel:assign 4

+ iinvoke

Figure 115 The Generated BPEL Workflow (Treeview)

119

MODELBUS
ModelBus User Guide

Looking at the BPEL workflow in the tree view of an xml editor (see Figure 115) the following
elements can be identified:

The receive of the updatemodel notification
The gate with its condition
The fault handler catching the exception

P wnNPR

The assignment of the parameters and invocation of the transform

A lot of details are still hidden in the collapsed parts of the xml file. Nevertheless the
executable workflow could also have been created directly using the support of a BPEL
editor. In this case a non-graphical workflow editor or one with a proprietary graphical
notation would have to be used.

18.5 Deployment and execution of the workflow

To be executed the BPEL workflow and possibly needed additional xml files have to be
deployed to an appropriate BPEL server. In this case a BPEL 2.0 server has to be used. Using
the Intalio Server is most appropriate due to its integration with the Designer environment
but other BPEL 2.0 servers might work to.

¥ Intalio | Designer - MBWorkflowExample/UpdatedModel.bpm - Intalio | Designer

File Edit Diagram MNavigate Search Project Run Window Help

W= R0 P R S o

| CRnon MBWorkflowExample (Development) E
Deploy ExceptionhandlingWithBusinessRules (Development)
Deploy PeopleActivity (Development)

Deploy TestForms (Development)
Deploy GetTime (Development)

1—5_’ Process Explorer &2 L2 Palette

+ 13 ExceptionhandlingWithBusinessRult

@ 5 GetTime
& UpdatedModel.bpm .. MBWorkflowExample Manifest Editor £3 =
Overview @ = o g =
— Development = 8
v Settings w Deploy build files

Bundle name
MBWorkflowExample

) |S) Modeisus. xad
[V] 22 Repostory.wsd
22 RepositoryNotification,wsdl
& UpdatedModel bpm
2 gutservice.wsdl
) [S] xmimime. xsdf

Target namespace
http.ffexample.com

+
+
*
*
*
Server URL +

http:fflocathost.8080fode & Test

Timeout (in seconds)
i20

Deploy the bundle

[archive the bundle
Export directory
MBWorkflowExample
[[]8PMS behind a proxy
Cancel |z Save b Deploy
N

Figure 116 BPEL Workflow Deployment
120

MODELBUS
ModelBus User Guide

Just invoke Deploy (see Figure 116). Doing this the first time it will open a configuration view
to select the files to be deployed. To change the configuration afterwards, it can be invoked
directly. Pressing the deploy button will send the files and information to the server ready to
be executed.

The Intalio BPM-Server can be controlled using a server console in a web browser (see Figure
117).

{2 Intalio| Console - Windows Internet Explorer EI@IFXI

@@v [0 e ocalnest DIEIEAER | 2]~

Fle Edt Wew Favortes Tooks Help
¢ Favorites | s @ ~ [Free Hotmal &) - | bpms-conscle [Intaliowerkflow

o L »
9 Intalio| Console [| =) g - Page- Safetyr Toos- @+

" INTALIO PROCESSES INSTANCES TOOLS & intalioladmin REFRESH LoGoUT

PROCESSES

[Activate | [Deploy | [Undeploy

Process Lifecycle In Progress Failure Suspended Failed Terminated Completed Total

AbsenceRequest [v1]

AbsenceRequest ACTIVE
ExceptionhandlingWithBusinessRules [v1]

E dlingWithB Rules Process ACTIVE
GetTime [v1]

GeiTime GetTime Process ACTIVE - - - - - 4
HelloWorld [v1]

HelloWarld:HelloWorld ACTIVE
MBWorkflowExample [v2]

UpdatedWodel:Orchestration Workflow RETIRED
MBWorkflowExample [v3]

UpdatedWodel:Orchestration Workflow RETIRED
MBWorkflowExample [v4]

Updatedilodel:Orchestration Workflow ACTIVE
MBWorkflowExample [v1]

UpdatedWodel:Orchestration Workflow RETIRED
PeopleActivity [v1]

BAPA RETIRED - - - - 1
TaskManager [v1]

TMP:TaskManagementProcess ACTIVE
TestForms [v1]

PeapleActivity PA ACTIVE

11 processes 7 hAclive 3 1 0 0 3 10 16

4 Refired
@ [Activate] [Ceploy] [Undeploy

[
~

[N

I~
o

o Y
[
=
In
e

I~
5]

Powered by Intalio]BPM (Version 6.0.3. Build 6.0.3.010.01) Bug/Feature Request version details

% Local intranet dh - Bl v

Figure 117 The BPM Server Console

For more details on the BPM workflow definition, execution and control see the Intalio
documentation on the web site (http://community.intalio.com/) or the documentation of

your favorite tools.

18.6 Including user interaction in a workflow

The BPMN workflow (see Figure 118) caught exceptions from the transformation on the
border of the sub process invoking it. Exceptions can be handled in different passed (as done)
or automatically processed including a specific task / sub process or semi automatically
processed by invoking a human interaction.

121

http://community.intalio.com/

MODELBUS
ModelBus User Guide

Qrchestration Workfow

3
epositortlotification/updateMadel

@
transfomm

Figure 118 The BPMN Workflow

For BPEL an extension (BPEL4People) exists that allows interactions with humans. Intalio
implements this in it tool. In the following section it shall be sketched how this feature can be
used in a workflow and how it will influence the automatic execution. The will not be a full
and detailed description of integration of human interaction in a workflow using the Intalio
tools. For that use the documentation and examples from the web site
(http://community.intalio.com/).

Human interaction means communicating information with human users. For this Intalio
allows to define “forms” which allow the definition of the information exchange. This must
be defined with the Designer tool. Intalio offers two different ways to define those forms. For
detailed information see the Intalio community documentation. Since only the principles of
human interaction shall be shown here, the outdated and less flexible way is used here | the
examples.

Then the interaction with a human user must be included in the BPMN workflow. Assume
that in the case of an exception in the transform operation a human activity shall be invoked
to do some “repair” depending on its success the normal or error exit shall be taken.

The form to interact with the user is shown in Figure 119. The upper part is to output the URI
of the model where the transformation went wrong. Normally you should deliver here
122

http://community.intalio.com/

ModelBus User Guide

MODELBUS

detailed information about the error. The second is to input the result of the human action

and to deliver it back to the orchestration workflow.

Something curios has happened during transformation of ;

) repair successfull
) repair NOT successfull

Figure 119 Human Interaction form for the “repair action”

The repair process in the orchestration workflow will be started catching the exception at the

border of the transform sub process. It is shown in Figure 120. The task in there must be

linked to some tasks in a pool representing the human actor.

g ? S
™~ =

Transform
’ ==
! |
1 \
! |

{®)
/ —®
e h i Receive hurman
Mvake humsan acton action completion N\
[L
p.

I\’®

| L

Figure 120 Orchestration Workflow Extension for the Repair Process

Therefore, an additional non executable pool has to be created and a chain of two tasks to

receive the action request and to respond when it is completed has to be created. This is

done by just drag and drop the form created to the pool and anther the question popping up

(see Figure 121).

The two resulting tasks in the Human User pool have two be connected to the corresponding

tasks in the orchestration workflow by message flows as shown in Figure 122. The order of

the message flows is important. They are automatically combined with the WSDL information

for the interaction.

In addition, we have to set the role of human the task should be assigned to in the properties

of the pool. The result is shown in Figure 122.

123

™ MODELBUS
ModelBus User Guide

o process Explorer &1 .7 Palette = O & *updat bpm 3385 o

4 1 ExceptiorhendingWihBusinessRules
3 i GetTme:
= & MBWarkflowExaple
® B bud
=

(S Humaninteraction.xform. xsd
[S) ModeBus. xsd

@ A qutservice.wsdl

@ A Repostory.widl

& RepostoryNotification.wsd

—®

Receive human
O-)mokenumanatﬁﬂﬂH actioncompletion]’w @

Updatedhodel bom
® (5] mnime.xsdl
#1123 Peopleactnty

Orchestrgflon Workflow

3 6B TestFoms ! ‘ 2Q)

i =i

i

I

|

! -

i

i
bl for People Iniating P (itProcess)
[[y 5 Humenintecaction for People Aty (crate end conplete)

57 se Humaninteraction for Notication (nakify)

€ ST Lse Humaninteraction for Escalation (escabte)

Figure 121 Drag and Drop the Human Interaction Form

s *UpdatedModel bpm £2 ‘25 HumanlInteraction,xfarm

=
=
£
S
S
= ;
E .
E woke human action) Recelve uman
= ! action completion
=] | . <
! [l
I 1 |
i | | 1 !
: | | 1 !
. [=
: I | | U I
- g, 5 . R
i I I
| ! |
P - i !
I | i I I I
I | i I I !
' | ! I
i P L . :)
I |
I : | @ o
| | | umaninteraction-create umaninteraction-complets
| 0 | & &
I | | = (=]
|
i Lo
| i |
| I,
[[°
4 >
2 Tasks | 2 Problems | k=1 Mapper |] Properties £ (© Progress v =
<0> Pool (Process): Human User
Participant
Process Execution User(s) | ‘
AppEarance
workflow Ralels) | Supporker ‘

Figure 122 Message Flows to the Human Tasks and Role Property for the Pool

The last step to be done is the mapping of information:

1. In the “Invoke human action task” the model URI has to be assigned to the form info
(see Figure 123).
2. The condition for the gate has to be defined (see Figure 124).

124

MODELBUS
ModelBus User Guide

] Tasks |21 Problems | fd Mapper &2 = Properties| © Progress |~ 100% |w|fx - B~ Zp- ¥ 7L
assign
E f; $humanInteractionhokifyTaskCompletionResponseMsa. oot ~ $humanlnteractionCreateTaskRequestMsa.rook E =
= $2 frepositoryMotificationlpdateModelRequestMsg. parameters default initialization EF
= [e] madeluri taskmetanata [€] &
abe texk: string participantToken [&] @
[E] userName taskinput [€] =
input] =

repair_successfull (8] &
‘has_happened_during_transformation_of [] =
text: string abe

Figure 123 Data Mapping of the Model URI

& Tasks | [£li Problems 1! Mapper 2 . T Properties | & Progress B o — 100% v Ei- oY =0

condition for [GatewayDataBasedExclusive - EventEndError] | Default Flow

umanintera ot ~ condition 57
umanInter actionCreateTaskResponseMsg.roak
humanlnter actionMotify TaskCompletionRequestMsg, root

= [&] participantToken
=
=

[&] user
[taskmetanata
[&] taskoutput
= [l output
@ @formiid
@ @participantToken
® @ @taskid
@ @user
= [&] repair_successfull
abe text: string
[&] Samething_curios_has_happened_during_transfor
[e] status
£ E $humanInter actionMatify TaskCompletionResponseMsg.roat
¥ frepositoryhntificarionUpdateModelRequestisg. parameters

Figure 124 The Gate Condition in the Repair Sub Process

In addition, to the BPMS console of the server used to administer the workflows, there exists
an Intalio workflow console where a user logs in as a member of a specific role. When in our
case a member of the “Supporter” role logs in he will find the invoked human action in its
tasks, will be presented the form and react on it. After he sends the completion, the
processing will continue in the orchestration workflow.

Be aware that it can take hours, or even days or month until the human interaction is
completed. For this reason compensation actions instead of transactions must be used and it
may be useful to use timers in the orchestration workflow not to be forced to infinitely wait.

125

PART V

Developer API

MODELBUS
ModelBus User Guide

19. ModelBus Architecture

The following section describes the ModelBus architecture in more detail. The first sections
describe the underlying concepts and the corresponding interaction pattern.

19.1 Concept

Within a ModelBus environment each artifact that is shared between different tools is
unique identified by a namespace. The namespace is represented by URLs. The namespace
could also be used to structure artifacts by grouping them into domains and sub-domains. An
example structuring can look like this:

http://www.mycompany.org/docs/example.doc
http://www.mycompany.org/models/
http://www.mycompany.org/models/mymodel
http://www.externalcompany.org/projects/models/b2bmodel

The example.doc file is identified within a ModelBus environment by a namespace which is
represented by the URL http://www.mycompany.org/docs/example.doc. Likewise, models
were addressed and identified by the same mechanism. Thus, the model mymodel is
addressed by the URL http.//www.mycompany.org/models/mymodels. Both, file and model,
are grouped into the domain mycompany.org. However, they are separated into different
sub-domains.

In the context of ModelBus models are special artifacts which will be shared. In contrast to
plain files models have dependencies and references to other models. For instance a model
has no meaning without its meta-model. Thus, for instance, we have to share meta-models
as well in order to share models between tools. Furthermore, models can become very huge
with thousands of elements. However, due to the fact that models are well structured, we
can use model-driven techniques as incremental model transportation or transferring only
parts of model (model fragments) in order to deal with the complexity of such big models.
There are several other questions with respect to model sharing. Therefore, ModelBus comes
with a set of particular functions which handle model sharing issues like scalability or
consistency. This handling is transparent to the user and managed by the ModelBus
infrastructure.

Due to the fact that the ModelBus infrastructure is designed for model sharing in particular,
this also reflect to the connectors to the infrastructure. In general, we have to define a meta-
model for each tool, which will be connected to a ModelBus tool chain. Figure 52 illustrates a
generic ModelBus integration. The basic idea is that a tool wants to share its data with other

129

MODELBUS
ModelBus User Guide

tools in an integrated environment. In addition to that a tool can also provide operation for
others. However, in many cases tools don’t have the same data structure, data format or
data basis. Models can help. Therefore, we specify a meta-model of the tool internal data
and adapt them into a specific tool data instance model which conforms to the meta-model.
Then, we only exchange and share these instance models.

Domain A Domain B

Tool 1 Tool 2 Tool 3

’ Tool 1 [Tool2 ‘ Tool3 |
| MetaModel Meta Model Meta Model |

Dom : Domain B
Domain A
i Model Model
[DomanA |] Domanb 1
1 MetaModel | . Metatodel |
S Tooli | m Tool3
Tool 2 &
Sl Meta Model Meta Model 7 Model Repository Meta Model]

Figure 125 Generic ModelBus Integration

In today’s software development processes different tools are used in the same engineering
phases. For instance, Doors (http://www-03.ibm.com/software/products/de/ratidoor) and

Microsoft Office (Word/Excel) (http://office.microsoft.com) are important and frequently

used tools in the requirement engineering phase of software projects. Thus, we can also
define a meta-model for the requirement domain and share instances of it as well. Thereby,
we will have a common language for different tools in the same development phase.

Every instance model has an URL representing the namespace of it, regardless of domain or
tool. All models are stored in a model repository. The next section describes the repository
briefly.

19.2 Repository

The key concept of model sharing in ModelBus is realized via a model repository. This

repository interface is open and allows straight forward addressing of models via URLs. This

addressing schema also results in simple service interfaces, because only model references

instead of models are transmitted. Repository vendors can implement this interface in order
130

http://www-03.ibm.com/software/products/de/ratidoor
http://office.microsoft.com/

MODELBUS
ModelBus User Guide

to be ModelBus conform. ModelBus itself is delivered with a built-in model repository, which
supports versioning, partial check-out of models and coordinates the merging of model
versions and model fragments.

The model repository is a web service and provides the following services and notifications.

service name description

checkInModel

checkOutModel

checklInFile

checkOutFile

delete
exists
getDir
info

lock

unlock

getLocks

createModel
updateModel

deleteModel

The checkinModel operation stores or updates the model into the
repository at the given modelURI and it creates a new revision. The
operation returns a checksum in order to verify the successful
transmission of the model. If the model does not exist within the
repository the model will be created initial by the operation
The checkOutModel operation gets a model from the repository
according to the given modelURI. If a specific revision of the model is
requested the URL needs to contain the corresponded revision number
or peq revision number
The checkinFile operation stores the file into the repository at the
given fileURI. The file will initial created if it does not exist already.
The checkOutFile operation gets a file from the repository according to
the given fileURI. If a specific revision of the file is requested the URL
needs to contain the corresponded revision number or peq revision
number.
The delete operation removes the corresponding artifact according to
the given URL.
The exists operation checks whether the corresponding artifact exists
at the given URI with the given revision number.
The getDir operation gets information of the RepositoryDirNodeKind
according to the given URL and revision’s version number.
The info operation gets information of the artifact according to the
given URL and revision number.
The lock operation locks the artefact according to the given URL. The
timeout parameter specifies the timing end of the lock. If the timeout
value is 0 the lock is permanent and has no timeout.
The unlock operation unlocks the locked artifact according to the given
URL.
The getlLocks operation gets information of all locked artifacts
according to the given URL prefix.

specific notification
The createModel event will triggered whenever a model was
created or initially stored in the repository.
The updateModel event will triggered whenever a new version of
model is checked into the repository.
The deleteModel event will triggered when a model was deleted in

131

MODELBUS
ModelBus User Guide

the repository.

ModelBus make use of the call-by-reference interaction pattern which is described in the
next section.

19.3 Interaction Pattern

ModelBus provides an interaction pattern in order to enable model sharing in a distributed
and heterogeneous model-driven development process. Figure 53 depicts the general
interaction pattern in a ModelBus integration scenario.

e
e A
Invoke 5

service Store
—>

— e
For] L
o Invoke Tool B seryice . Rep
wn =
a model —[LORE
service
< |
‘ Repository |, Store Ml | Retun
model
¢ Responseto Tool A request
: Get .
esponse
Modeling LKesponse Stub =] Modt_ellng
Consumer -~/ Skeleton Service

Figure 126 ModelBus Interaction Pattern

The basic idea is that Tool A interacts as a consumer of the provided service of Tool B, which
interacts as a service. If Tool A wants to consume the service of Tool B it simply invokes the
corresponding operation in the ModelBus Stub. The generated stub will offer by the
ModelBus infrastructure automatically and it is based on distributed OSGI. The stub stores
the model into the repository, for instance by calling the checkinModel operation of the
repository. After that the stub invokes the service skeleton which is also offered by the
ModelBus infrastructure. During this invoking stub and skeleton only exchange the
references of the models. This means that the consumer only specify of URL of the model,
whereas the service skeleton only expects this URL. On the other hand the service skeleton
takes this URL and gets the model from the repository by calling checkOutModel. The
skeleton, itself, calls the corresponding implementation of Tool B.

The response is analog, due to the fact that the result data of the service operation is a
model as well. The response model will also check into the repository by the skeleton. The
skeleton returns to the stub only by transferring the URL of the response model. The stub
checks out the response model again and delivers it to Tool A.

The advantage of this is interaction pattern is that service interfaces become simple and only
use standard WSDL data types. Thereby, external tools, like Intalio BPMS Designer
132

™ MODELBUS
ModelBus User Guide

(http://www.intalio.com/products/bpms/overview/) can be used in order to orchestrate

ModelBus services as well as exclusive or in combination with other non-ModelBus services.

19.4 Provider Adapter

The architecture of a provider adapter is illustrated in figure 54. In general, an adapter
consists of three parts. The colors shall depict the different parts.

User Front End Provider Tool

Tool
internal

Interface
Impleme
ntation

Tool
Meta- Model

' &
Tool Instance
. G Model I/’ -

Figure 127 Provider Tool Adapter Architecture

The blue part represents the tool logic and its data. Usually, a tool represents the data, which
the tool is working on, in its own format. Therefore, we have to adapt this internal data into a
common exchange format. For this reason we have to define an EMF-based meta-model that
represents all necessary aspects of the internal data in the context of ModelBus. The
concrete tool data are adapted into instances of this meta-model. This part is represented in
figure 54 by the green color. The third part of an adapter is a more generic part represented
by the red color. This includes several third party libraries as well as the ModelBus Core lib.
The core lib provides an API that enables the access to the model repository directly. This API
can also be used in order to querying or browsing the repository from a tool specific user
front end. The interaction between provider and consumer is realized via Apache CXF DOSGI
implementation (http://cxf.apache.org/distributed-osgi.html). Therefore, the integration
effort to ModelBus is similar to the integration effort of DOSGI. Furthermore, the core lib
provides a number of specific functions in particular for models like dependency

management or fragment support.

133

http://www.intalio.com/products/bpms/overview/
http://cxf.apache.org/distributed-osgi.html

™ MODELBUS
ModelBus User Guide

19.5 Consumer Adapter

A ModelBus consumer adapter isn’t very different to a provider. It also consists of the generic
part, the tool and its data and as well as the adaption part to a model-based representation
of the tool internal data.

Usai Eront End Consumer Tool

Tool
internal

|

Request
Service

|

Provider 5
Provider Tool
&stance Model /
» c ‘“\ o
C

|
!
‘l" _E_E|ETEET S _emeaemsmETEETeEaETETEED

uone.ado sap| 40,4

APT
@ e

Java

Interface Provider Tool

Meta- Model

Figure 128 Consumer Tool Adapter Architecture

In this generic example the consumer use the provider tool meta-model. This meta-model is
the common exchange format between these tools. The transformation between this format
and the tool internal data of the consumer is done by an adaption component. This
component is tool specific and different from tool to tool. However, a lot of tools already
have a model as basis for their internal data. And also many tools already use the EMF for
defining such models. In this case the adaption between tool internal data and the
corresponding tool instance model has no significant effort. Of course the consumer can also
use the ModelBus Core lib in order to browsing the repository as well as to check-in or check-
out models or other artifacts directly into the model repository.

The communication infrastructure framework is based on third party library for the
consumer as well. Again the DOSGi project is used to enable the web service functionalities
for remote services via SOAP over HTTP. Nevertheless, the communication frameworks as
well as the model handling facilities are completely transparent to the developers of the
provider or consumer.

134

MODELBUS
ModelBus User Guide

19.6 ModelBus Core Lib API

One of the important classes within the ModelBus core lib is the ModelBusCorelib. This class
encapsulates the remote access to the model repository and ModelBus services and
therefore provides an implementation of a so called “repository helper” or “services helper”,
respectively. The RepositoryHelper, which is the default implementation for a repository
helper, is located in the package org.modelbus.core.lib.dosgi.

The following section shows some examples in order to demonstrate how to work with the
ModelBus core lib. In addition to the RepositoryHelper class an example illustrates also how
to receive notifications from the ModelBus infrastructure.

135

MODELBUS
ModelBus User Guide

20. Code Examples

In the following we describe some examples how to use the core lib and interact with the
repository. The source code of these examples is available on the www.modelbus.org
website.

The starting point for the examples is that you have already gone through the installation
part of this user guide. Make sure that everything is installed correctly and the server
containing the model repository is up and running.

20.1 Repository Browser
This example illustrates how to use the core lib and its APl in order to browse through the

repository.

Step 1 - Create an Eclipse Plug-In Project and add org.modelbus.core.lib.dosgi,
org.modelbus.cxf.dosgi.startup, org.eclipse.core.runtime and org.eclipse.emf.ecore.xmi to the
required plugin-ins in the project MANIFEST.MF file.

2 Dependencies

Required Plug-ins i

e

Specify the list of plug-ins required for the operation of this plug-in.

Eborg.eclipse.ui Add...
e org.eclipse.coreruntime

!

EIEorg.eclipse.emf.ecore.xmi (2.5.0) Remove

%I}org.modelbus.cxf.dosgi.startup (1.9.5)
V]
a]}m .modelbus.core.lib.dosgi (1.9.6)
9 9

]

Down

Properties...

/

Figure 129 required Plug-ins configuration

Step 2 - Create a java class and the two properties.

public class RepositoryBrowserExample {

public static IRepositoryHelper repository =

ModelBusCorelib.getRepositoryHelper() ;
public static Session session = new Session();

}

We define a repository attribute of type IRepositoryHelper. To construct the
IRepositoryHelper we have to call the method getRepositoryHelper() of the class

136

http://www.modelbus.org/

™ MODELBUS
ModelBus User Guide

ModelBusCorelib. In addition to that we also need a session in order to authenticate with the

repository as a valid user.

Step 3 - initialize the session with corresponding data

In general, the user Admin with the password ModelBus is created initially by the ModelBus
infrastructure. This user information is encapsulated within the Session object.

Step 4 — use the ModelBus core lib API

™ MODELBUS
ModelBus User Guide

The main method of our class calls the initSession method. After that, the root node of the
model repository is fetched by the repository.getRoot(session) operation call. The return
value is of type RepositoryDirEntry. Figure 57 depicts the structure of a RepositoryDirEntry.

Figure 130 RepositoryDirEntry and RepositoryNodeKind

The RepositoryDirEntry class holds several information of a repository entry. For instance the
URL and the revision number of the entry. Furthermore, RepositoryNodeKinds are defined for
repository entries. They can be of type File, Dir, Model as well as unspecified (kinds like None,
Unkown). Please note, that NONE has been moved with release 1.9.9.

138

™ MODELBUS
ModelBus User Guide

By using this information we are now able to browse through the repository. This is shown in
the writeEntries method displayed in the previous table.

20.2 Microsoft .NET based Repository Browsing

In order to use the core lib with the .NET framework, /IKVM has been used to compile the
JAVA core lib into .NET libraries. This is an example of how the core lib can be used in a C#

application to browse through the repository.

Step 1 - First of all the IKVM libraries are required. Version 0.46.0.1 has been used to
translate the core lib. You can download IKVM at http://sourceforge.net/projects/ikvm/files/.

A Please note that IKBM release 0.46.0.1 is the last release that supports Java 1.6.

Step 2 -Download the ModelBus .NET core lib from the release website
http://www.modelbus.org/en/modelbusdownloads.html.

Step 3 - Create a Visual Studio project, e.g. a Console Application and reference the following
.NET-libraries:

e From the .NET Corelib:
o org.modelbus.core.lib.dll
o org.eclipse.osgi.dll
o org.eclipse.equinox.dll
o org.eclipse.emf.dll
o org.eclipse.core.dll
e From the IKVM-0.44.0.5/bin
o IKVM.OpenJDK.Core.dll
o IKVM.OpenJDK.XML.Bind.dll
o IKVM.OpenJDK.XML.WebServices.dll

Step 3 — With these libraries, you are enabled to write ModelBus applications in C#. In this
example, a program similar to the above Java example is realized in C#:

139

http://sourceforge.net/projects/ikvm/files/
http://www.modelbus.org/en/modelbusdownloads.html

MDDELBUS ModelBus User Guide

™ MODELBUS
ModelBus User Guide

Using the IKVM converted Java classes, it is possible to connect to the Modelbus repository

very similar to the Java implementation.

20.3 Model Fragmentation

This example illustrates the usage of the ModelBus core lib to split models into fragments.

Step 1 —see section 20.1

Step 2 — Create a Java class (see section 20.1)

Step 3 —initialize the session (see section 20.1)

Step 4 — use the ModelBus core lib API

™ MODELBUS
ModelBus User Guide

After the session has been initialized you have to create a ResourceSet and put the
UMLPackage to the PackageRegistry. Then you load the model you want to split into
fragments. We call the getContents() method on the resource to get the root element of our

model. Afterwards you get the “fragmentElement” from the “rootElement” by calling
eContents(). This element will be our fragment which we want to control. First you have to
check the original model into the repository and then you can call the method control() on
the “repositoryHelper”. After this you can check out the two models from the repository,
modify the fragment, check in the changed fragment and uncontrol the fragment again.

20.4 Dependencies Support

This example shows how to use the ModelBus core lib API to enable dependencies support
for models and to get the dependencies of models or model elements.

Step 1 —see section 20.1

Step 2 — Create a java class e.g. DependenciesExample (see section 20.1)

142

™ MODELBUS
ModelBus User Guide

Step 3 — initialize the session (see section 20.1)

Step 4 — use the ModelBus core lib API

MODELBUS
Eﬂ ModelBus User Guide

// the name of the referencing object

String objectName = referencesInfo.getObjectName () ;

System.out.println ("referencing Uri: " +
referencingObjectUri + " type uri: " +
objectTypeUri + " object name: " +

objectName) ;

}

} catch (IOException e) {
// Auto-generated catch block
e.printStackTrace () ;

After the initialization of the session you have to enable dependency management and to
specify the model extensions to use for the dependency analysis. In this example, the
modelExtensions parameter is set to a new array of strings with the one element “um/”. Then
you load your model (my.uml) which should reference some other models (here my2.uml)
beside the UML meta-model and call the checkinModel operation on the repositoryHelper. All
referenced models and meta-models are committed to the repository. Afterwards you obtain
the incoming references of a referenced model (my2.uml) by invoking the operation
getincomingReferences(). The return value of this method is from type
IncomingReferencesinfo[]. The IncomingReferencesinfo object holds the URI of the
referencing model or model element, the URI of the model element’s type and the name of
the referencing model element.

20.5 Notification Listener

The following example describes how to receive notifications from the model repository on
client side.

Step 1 - Create an Eclipse Plug-in Project and add the plug-ins org.modelbus.core.lib.common
and org.modelbus.cxf.dosgi.startup to its required plug-ins.

144

™ MODELBUS
ModelBus User Guide

% Dependencies

' Required Plug-ins 12 |
Specify the list of plug-ins required for the operation of this plug-in.

Figure 131 Required Plug-ins Configuration

Step 2 - Implement the INotificationListener interface

In order to receive notifications from the repository we have to implement the
INotificationListener interface first. The interface is defined in the package
org.modelbus.core.lib.notification of the ModelBus core lib.

The interface defines two methods. We have to implement the method notification, whereas
the parameter mode specifies the kind of notification to receive, for instance delete, create
or update. For this example the interface implementation is named MyNotificationListener.

145

™ MODELBUS
ModelBus User Guide

Step 3 - Register NotificationListener

After implementing our NotificationListener we have to register it to ModelBus. Therefore,
we need the NotificationListenerManager that helps us to manage the notification reception.
The class is also contained in the notification package of the ModelBus core lib.

First, we have to set the URL of the repository to the NotificationListenerManager in order to
create an instance of this class. Then we can add our implementation of the
INotificationListener to this manager class. After that the method notification of our listener
will be executed whenever an event is sent via the ModelBus infrastructure.

If the listening is no longer required we can deregister our notification listener from the set
of managed listeners by calling the remove method of the NotificationListenerManager class.

20.6 How to write an Adapter

146

MODELBUS
ModelBus User Guide

A Please note that it is currently not possible to run ModelBus adapters using HTTPS.

To be able to write an adapter, you must first install a ModelBus client as described in section
4. To be able to run it, you should also have a server installed and running as described in
section 3. The system variables MODELBUS_SVN_REPOSITORY _LOCATION and
MODELBUS_REPOSITORY_LOCATION must be defined (see and). Since ModelBus Release
1.9.7 you can alternatively define a system variable named MODELBUS_ROOT pointing to the
ModelBus installation folder containing the Modelbus configuration model (see chapter 3.1.1
for more detailed information).

The interaction patterns of ModelBus and the architecture of a provider and a consumer
have been described in sections 19.3, 19.4 and 19.5. It is also described that the interaction
between provider and consumer is realized via Apache CXF DOSGI. Nevertheless, a WSDL will
be provided and may be used directly.

The following tutorial describes the basics of writing those ModelBus provider/consumer
adapters using a simple hello World example to start with. It consists of three projects that
need to be created:

e interface
e provider

® consumer

20.6.1 1stProject - Interface
Step 1 - You need to create a new Eclipse Plug-in Project (see Figure 132)

147

MODELBUS

ModelBus User Guide

& New Plug-in Project

Plug-in Project
Create a new plug-in project

4

-lofx|

x|

prs

& New Plug-in Project

Content

Enter the data required to generate the plug-in.

Project jerru:n.tutn:-rl.':!SEra-‘i-:e,dr:‘sr:n -b:-v

IV Use default location

Location; l Ci\Dokumente und Einstellungenistefanpaschke!Eigene Dateieniw

Browse. .

7~ Project Settings
IV Create a Java project

Source folder: | src

Output folder:] bin

~ Target Platform
This plug-in is targeted to run with:

|3.5 vI
" an 05Gi framework: IEqumox ¥

% Eclipse version:

—Working sets
™ Add project to working sets

Working sets:

~ Properties
ID: I demo.tutorialService.descriptor
Version: I 1.0.0.qualifier
Name: | Descriptor
Provider: |

Execution Environment: |JavaSE-1.6

j Environments... I
2

=~ Options.
(l— Generate an activator, a Java class that controls the plug-in's life cycle)

Activator) |derr;r:u.tutorialservn-:e‘descrlptor,»kctlvatcn

IV This plug-in will make contributions to the LI
[Enable API Analysis

Rich Client Application
[Would you like to create a rich client application?

C ¥es (% Ng ’

< Back I Mext = I

Eirishy

| Cancel I

@ < Back I Next >

Cancel |

Figure 132 Create descriptor project

Open the New Project Dialog via File 2 New = Project. Select Plug-in project and click Next.
Assign a project name, e.g. demo.tutorialService.descriptor. In the second dialog make sure

you do not generate an activator. Press Finish and confirm to switch the perspective.

Step 2 - Create a new Java package with the same name as the project, e.g.

demo.tutorialService.descriptor by clicking File = New = Package. It will automatically be

created in the src folder of the project.

Step 3 - Within the package create an interface (in the context menu of the package select

New -> Interface). Assign a name for the interface, e.g. ITutorialService (see Figure 133).

148

ModelBus User Guide

MODELBUS

& New Java Interface) =] 3]
Java Interface =N
[Y
Create a new Java interface. k\ }’
Source folder: [demo.tutorialService. descriptor/src Browse. ..
Package: [demo.tutorialService. descriptor

I” Enclosing type: |

Browse...

MName: l ITutorialService
Modifiers: & public " defaule private

" protected

Extended interfaces:

Do you want to add comments? {Configure templates and default value here)

™ Generate comments

Einish I

Cancel

Figure 133 Create an Interface

The following source code will be generated automatically:

package demo.tutorialService.descriptor;
public interface ITutorialService {

}

Now you can specify some methods for the interface created above. If you use this code

directly, the WSDL generated will not have meaningful naming, e.g. the arguments of the

operations will afterwards only be named arg0, argl, ... which is not very useful. For this

reason, some additional annotations have to be added to the interface code.

Step 4 — Declare the interface as web service and define a method returning a string with one

parameter of type string. This is done by manually inserting the additional code as shown

below:

package demo.tutorialService.descriptor;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;

@WebService(targetNamespace = "http://demo.tutorialservice/", name = "TutorialService")

149

MODELBUS
ModelBus User Guide

public interface ITutorialService {

@WebMethod(action = "http://demo.tutorialservice/myOperation")

@WebResult(name = "returnValue")

public String myOperation(
@WebParam(name="dummysString",
targetNamespace="http://demo.tutorialservice/TutorialService")
String dummysString

)

}

When declaring the Interface as a web service, you have to assign a targetNamespace
("http://demo.tutorialservice/") and a name for the web service
("TutorialService™). The method myOperation will be exposed as a web service
operation and therefore declared as WebMethod. Define WebResult to customize the
mapping of the return value to a named WSDL part and XML element. Define WebParam to
customize the mapping of an individual parameter to a Web Service message part and XML
element.

As a result, we will have an interface with the operation myOperation with one parameter
dummyString and a return value. The naming in the java code and the automatically
generated WSDL will be the same.

Step 5 — Expose package demo.tutorialService.descriptor to clients (see Figure 134).

& Plug-in Development - demo.tutorialService.descriptor/META-INF/MANIFEST.MF - Eclipse
File Edit Mavigate Search Project Run Window Help

I09-E0 [3%-20-Q- | B# G- |0 - |- GG | F

f [£ Package Explorer &2 &" PIug-ins\ = mh) [J] ITutorialService. java]{E} *demo.tutorialService.descriptor £3 -
> ¢ =
BE|s =, Runtime
= IEJ demo. tutorialService.descriptor
[#- B} IRE System Library [JavasE-1.6] Exported Packages Pac
263 src Enumerate all the packages that this plug-in exposes to clients. All other Wk
=-f3 demo.tutorialService. descriptor packages will be hidden from clients at all times.,
= LJ_J ITutorialService.java T 2 2 5 ©
5-0 IMutorialservice £ demo.tutorialService. descriptor fo)
© myOperation(String) : Str
[=1-(= META-INF
L9 MANIFEST MF
lo1d build.properties

Figure 134 Expose Package demo.tutorialService.descriptor to Clients

Open the meta information of the project (MANIFEST.MF). Open tab Runtime and add the
package to Exported Packages.

150

ModelBus User Guide

MODELBUS

20.6.2 Second Project - Provider

A Since ModelBus release 1.9.6 you can use the “ModelBus Service from Existing
Interface” wizard to generate a provider and a consumer according to your service interface.

Please note that this feature is still in development.

Step 1 - You need to create a new Eclipse Plug-in Project (see Figure 135).

_igix]
Plug-in Project

Create a new plug-in project i /

& New Plug-in Project

Content

Enter the data required to generate the plug-in.

=lolx]

1

Project name:l | demo.tutorialService.provideri

¥ Use default location

Location; |C:'|,D-:|}'urnr:ryt»:~ und Einstellungenistefanpaschke!Eigene Dateieniw Browse, .,

[~ Project Settings
[V Create a Java project

Source Folder: | src

Output folder: | bin

i~ Target Platform
This plug-in is targeted to run with:

& Eclipse version: 3.5 'I
" an OSGi framework: lEqumx 'I

[~ Working sets

[~ Add project to working sets

Waorking sets: L]

[Properties
1D I demo.tutorialService.provider
Version: | 1.0.0.quallfier
Name: | Provider
Provider: |

Execution Environment: IJavaSE—1.6 L] Environments... I

2 Options
[~ Generate an activator, a Java class that controls the plug-in's life cyclei]

Activator; l demoa.tutorialservice. provider, Activator J

[V This plug-in will make contributions to the UL
[~ Enable API Analysis

Would you like to create a rich client application? C ¥es ' ho ‘

I'Rich Client Application

< Back I Mext = I Einish | Cancel |

o

@ < Back Mext = | Einish I

Cancel

Figure 135 Create plug-in project for provider

Open the New Project Dialog via File = New 2 Project. Select Plug-in project and click Next.
Assign a project name, e.g. demo.tutorialService.provider. In the second dialog make sure you

do not generate an activator.

Step 2 — Create a new package with the same name as the project in the src folder of it, e.g.

demo.tutorialService.provider.

Step 3 — Correct dependencies and specify the plug-ins required (see Figure 136).

151

MODELBUS
ModelBus User Guide

& Plug-in Development - demo.tutorialService.provider /META-INF/MANIFEST.MF - Eclipse

File Edit Mavigate Search Project Run Window Help

I-BHE 3 0-%- | BBG-|®C 5|/t 060y | #

4 = - - =
[# Package Explorer £3 \5‘4‘ Plug-ins | =0 <+ *demo.tutorialService.provider £3

o SR = g
- % | % Dependencies
[DJ demo. tutorialService.descriptor
=] ID‘J dgmo.tutoriaIService.provider Required Plug-ins la
[+-®, IRE System Library [JavasE-1.6] z
B0 sre Specify the list of plug-ins required for the operation of this plug-in.
{ £ demo.tutorialService. provider ?_QIF org.modelbus.dosgi.services (1.915)]
& ﬂE;TA-INF 2';1::org.modelbus‘core.lib.dosgi(1.9.5) |
- m’ MANIFES_T'MF ?;Ix org.eclipse.core.runtime (3.5.0) [
ob build.properties tdemo. tutorial descriptor (1.0.0)

Figure 136 Provider dependencies

Open the meta information of the project (MANIFEST.MF) of the provider project. Open the
tab Dependencies (shown at the bottom) and add the following plug-ins:
org.modelbus.dosgi.services, org.modelbus.core.lib.dosgi, org.eclipse.core.runtime and the
descriptor you implemented in the first project demo.tutorialService.descriptor. Just press
the add button and enter the names in the select a Plug-in field. Don’t forget the descriptor

plug-in.

The Provider should provide the service. Thus it needs to implement the interface from the
descriptor.

Step 4 — Create a new Java class TutorialServicelmpl that implements the interface
ITutorialService you defined in the first project (see Figure 137).

152

™ MODELBUS
ModelBus User Guide

New Java Class
Java Class

Create a new Java class.

demo.tutorialService. provider/src

demo.tutorialService provider

Figure 137 Implement Interface

Extend the source code for the class to implement the interface ITutorialService as follows:

When a class implements ITutorialService it has to implement the inherited abstract method
myOperation. In this example, it returns the argument dummyString and appends “ World” at
the end of the string.

Step 5 — Create a second class Activator in the package demo.tutorialService.provider (see
Figure 138).

153

™ MODELBUS
ModelBus User Guide

& New Java Class

Java Class

Create a new Java class.

I abstr

Figure 138 Class Activator

Step 6 — The class needs to inherit from class AbstractModelBusAdapterProviderActivator.

154

MODELBUS
ModelBus User Guide ﬂ

return ITutorialService.class;

If you extend AbstractModelBusAdapterProviderActivator several methods have to be
implemented. For this tutorial three methods need to return a proper value. Rewrite
createServicelnstance() to return a new instance of the class TutorialServicelmpl you
implemented in Step 4. Further change getServicelnterface() to return the interface class.

In addition, the service name has to be provided to the ModelBusServiceConfiguration using
the argument passed to the configure() method. In this method, you can also specify the
location where the service should be accessible. By default, ModelBus will publish the service
at port 9090 using the interface name to determine the web context (in this example the
location would be http://localhost:9090/itutorialservice). The following listing shows some
examples to alter the default behavior:

package demo.tutorialService.provider;

import org.modelbus.ModelBusServiceConfiguration;

import org.modelbus.core.lib.dosgi.AbstractModelBusAdapterProviderActivator;
import org.modelbus.core.lib.dosgi.RepositoryHelper;

import demo.tutorialService.descriptor.ITutorialService;

public class Activator extends AbstractModelBusAdapterProviderActivator {

()

@Override
protected void configure(ModelBusServiceConfiguration config) {
config.setServiceName("ModelBus demo service");

//explicitly set another service location; manual port selection
config.setOption(ModelBusServiceConfiguration.OPTION_SERVICE_ADDRESS,
"http://localhost:9200/tutorial");

//or: set service context only; automatic port selection
config.setOption(ModelBusServiceConfiguration.OPTION_OSGI_HTTP_
SERVICE_CONTEXT, "/tutorial");

155

MODELBUS
ModelBus User Guide

When setting the configuration option ModelBusServiceConfiguration.
OPTION_OSGI_HTTP_SERVICE_CONTEXT instead of explicitly defining a particular location,
the ModelBus server will start up an embedded HTTP server to host the ModelBus services
deployed in the same server instance. In this case, your service will be deployed at the next
free port available above the ModelBus server port using the specified service context. For
example, if you add the ModelBusServiceConfiguration. OPTION_OSGI_HTTP_SERVICE_
CONTEXT option with a value like “/tutorial” to the configuration and if you have the
ModelBus server running at port 8080, your service would be accessible via
http://localhost:8081/tutorial if the port 8081 is free.

A Please note: When setting the service port explicitly, i.e. when defining the service
location using the ModelBusServiceConfiguration.OPTION_SERVICE_ADDRESS
configuration option, please use another port than the ModelBus server is running at.
Otherwise this would not necessarily cause an exception, but may make the service
unusable for clients.

Step 7 — The class Activator needs to be set as activator in the Manifest of the provider
project. Open the meta information (MANIFEST.MF). Open up the tab Overview and set
Activator to demo.tutorialService.provider.Activator (see Figure 139).

& Plug-in Development - demo.tutorialService.provider /META-INF/MANIFEST.MF - Eclipse
File Edit Mavigate Search Project Run Window Help

- o p-0-Q- |B886- @ s | -0 |4
] Package Explorer E@x &' Plug-ins } =0 "{tﬁcdemo.tutoriaIService.provider XZ\ . [J] TutorialServiceImpl.java [E} A
~

= 5
-] S

i Overview

=7

= IGJ demo.tutorialService.descriptor
[#-B¥} IRE System Library [Javase-1.6]
i B sre
=3 demo.tutorialService. descriptor

General Information
This section describes general information about this plug-in.

E-[J) ITutorialservice.java ID: | demo. tutorialService. provider
B-€ ITutorialService Version: | 1.0.0.qualifier
P © myOperation(String) : || Mame: Provider
. B METAINF Provider: J
A+ MANIFEST.MF Platform Filter:
lob build.properties XS R -0 it orialService provider. Activator R

B demo.tutorialService.provider

I = IRE System Library [1avase-1.6] [Activate this plug-in when one of its classes is loaded

[+, Plug-in Dependencies [This plug-in is a singleton
B-53 src
=8 demo.tutorialService. provider et ERvh GrTriente

Figure 139 Set the Class Activator as Activator for the Plug-in

Step 8 — Create a new run configuration for the project (see Figure 140).

156

http://localhost:8081/tutorial

ModelBus User Guide

M[]IJELBUS

& Run Configurations x|
Create, manage, and run configurations
Create a configuration to launch an Eclipse application. @
3
- M ——
uame:l! TutorialServiceProvider |
type filter text
I EI Main (9= Argumentﬂ = Plug-ins] 8] Configura;ion] =] Traci_ng) s Environment] = gommon)
™) accelen Application T aC——
‘1 ATL Transformation |4 Workspace Data
& Eclipse Application @ocgtion: |${workspace_|oc}f..J'runtime-TutoriaIServiceProvideo
& New_configuration " Clear: # workepace € Iogonly Workspace. .. | File System... | Variables. . I
Java Applet
Java Application ¥ | aisk for. confirmation before cleating
Y JET Transformation
§ ~Program to Run
Ju Junit
j%' JUnit Plug-in Test ' Run a product: I org.eclipse.platform.ide _:]
MWE Workflow " Run an application: [org.eclipse.ui.ide.workbench ;I
[3- Operational QVT Interpre
éf’ 05Gi Framework ~Java Runtime Environment
- .
Juf Task Context Plug-in Tes Java executable: @ defaut © java
Juy Task Context Test
" Execution environment: ICDC»l 0fFoundation-1,0 {jre6) ;] Enyironments., . I
' Runtime JRE: Ijre6 El Installed JREs... I
Bootstrap entries: |
[i—— Apply I Revert I
Filter matched 14 of 14 items
@ Run Close I

Figure 140 Create a new Run Configuration for the Provider

Click on Run =2 Run Configurations to open up a new dialog.

Select Eclipse Application.

1. Create a new launch configuration.

2. Assign a proper name, e.g. TutorialServiceProvider.

3. Correct location to S{workspace_loc}/../runtime-TutorialServiceProvider.

Go to tab Arguments and append -console —consolelog to program arguments (see Figure

141).

& Run Configurations -

Create, manage, and run configurations

Create a configuration to launch an Eclipse application.

)

x|

ST -,
uu§x|5-ﬁ‘"

I type filter text

N Acceleo Application
f (ATL Transformation
=4 Eclipse Application
@ New_configuration

Name: | TutorialServiceProvider

[=] Main ((x)= Arguments le;-ins] s3] Conﬁgura;ion] =] Traci_ng) 2 Environment] = Qommon}

Program ar ts:
’7 -0s ${target.os}k -ws ${target.ws} -arch ${target.arch} -nl ${target.nl¥ -console -consolelog| ;]

Figure 141 Append Program Arguments

157

MODELBUS

ModelBus User Guide

Go to tab Plug-ins and specify the plug-ins the project has to be launched with (see Figure

142 — this figure does not show the exact names of the plugins to be selected. It is only a

schematic example. For a detailed description of the steps see the text following the figure.

& Run Configurations

Create, manage, and run configurations

Create a configuration to launch an Eclipse application,

W

BEX[E3-

Mame: |Tut0riaIServicePr0vider

Itype filker bext

----- Ju nit

----- JU Uit Plug-n Test

""" 4 05Gi Framework

""" | ﬁj Task Context Plug-in Test
~Ju) Task Context Test

Filter matched 9 of 9 items

E Main | ()= Arguments ":E. Plug-in Configura;ion} % Traci_ng} ﬁ Environmenq B gommon}

=] \'[I ‘Workspace
= dema.butarialService.descriptar (1.0.0.qualifier)
W= demo, bukorialService, provider (1.0,0,qualifier
= Byl Target Platform
?J? com.ibrm.icu (4.2.1.v20100412)
D?J? com.jeraft.jsch (0.1,41,%200903070017)
?J:‘ javax,serviet (2,5.0,v200910301333)
?J? javax.serviet.jsp (2.0.0,v200806031607)
D?J? javax,xml.bind (2,0,0,v20080604-1500)
D‘E:I:‘ Ipg.rurkime. java (2.0,17,v201004271640)
?J? org.apache activemg {1,0,0,201008261420)
?J? org.apache.ant (1.7.1.v20100518-1145)
D‘E:.T:‘ org.apache. batik, bridge (1.6.0,v200912221622)
D?‘Ik org.apache.batik.css {1.6,0,v200912221622)

default default
default
default default
default default
default default
default default
defaulk defaulk

Launch with |l plug-ins selected below only j Default Start level: |4 3: Default Auto-Start: Ifalse 'l
Itype filker text Select 1l |
Flug-ins | Start Level | fAlto-Start |
Deselect Al |

Add \Working Set... |
' Add Reguired Plug-ins |

Restore Defaults |

I™ Cnly show selected

D?‘I? org.apache batik. dom {1.6.0,v200912221622)

[V Include optional dependencies when computing required plug-ins

I™ add new warkspace plug-ins to this launch configuration automatically

ﬂ 06 ouf of /26 selected

[™ validate plug-ins automatically prior ta launching

Yalidate Plug-ins |

Al

| Rewert |

@

Close |

Follow these steps:

1. Set Launch with to plug-ins selected below only.

Click Deselect All.

3. Select the following plug-ins:

a. demo.tutorialService.provider

b. org.modelbus.cxf.dosgi.startup

Figure 142 Correct Plug-ins needed by the Project

and set the auto-start value of the demo.tutorialService.provider Plug-in to true

4. Veryimportant: click Add Required Plug-ins (you must have removed any filter if you

used them)

158

™ MODELBUS
ModelBus User Guide

5. Click Apply
6. Click Run

A Please note: When using the —console program argument in Eclipse Juno, please make
sure to also add the bundles org.eclipse.equinox.console, org.apache.felix.gogo.runtime
and org.apache.felix.gogo.shell to the run configuration.

A second Eclipse should start. In the console of the original Eclipse a lot of output is
generated (see Figure 143).

& Resource - Eclipse Platform = Dl!‘
File Edit Mavigate Project Sample Menu Window Help

& Plug-in Devel|

File Edit Source

Ire-E1&
[£ Packag 52
‘J';J demo.tut
122 demo.tut
E422 demo.tut
B RE<
(-2, Plug-i
-5 src
-8 d
L
(> META
[buid,
// TODO Auto-generated method stub
o return ITutorialService.class; _lLI
»
@ErrorLog(@Tasks(&Problerm(EConsole X B X % ‘ B aﬁ|§]|§|| *E-r5-=0
ialServiceProvider [Eclipse Application] C:\| \Javaljre6ibintj exe (06.05.2010 11:31:34)
-
o0sgi> Starting service consumer: org.modelbus.dosgi.repository.descriptor.RepositoryService g
Service demo.tutorialService.provider.TutorialServiceImpl scarted
06.05.2010 11:31:35 org.springframework.context.support.ibstractipplicationContext prepareRefres
INFO: Refreshing org.springframework.osgi.context.support.OsgiBundleXmlipplicationContext@67064: display nam
06.05.2010 11:31:35 org.springframework.osgi.context.support.ibstractOsgiBundledpplicationContext unpublishC
INFO: Unpublishing application context 0SGi service for bundle CXF Distributed Software Bundle (cxf-dosgi-ri
06.05.2010 11:31:35 org.springframevork.beans.factory.xml.ZmlBeanDefinitionReader loadBeanDefinitions v
«I | il s
J 1% ‘ Writable | Smart Insert | 26:36 J

Figure 143 Console Output after Starting Provider

159

MODELBUS
ModelBus User Guide

Scroll in the direction of the top of the output. At the beginning there should be some lines in
black and state a URL (see Figure 143). If they are not there but somewhere in the middle:
did you start the ModelBus server and is it still running? It is also possible that the black lines
have been scrolled of the console window. In this case you could increase its capacity in its
preferences (see Figure 144) — select Preferences in the context menu of the console and
remove the selection at Limit console output or increase its size. Once the provider started,
you should be able to get a response by opening this URL in a web browser with the query
string “?wsd/” added at the end, e.g. http://localhost:9090/itutorialservice ?wsdl.

D) Error Log | v Tasks | [2¢ Problems ' & Console £3 B e nCeE {Filtered) 7@@
‘utorialServiceProvider [Eclipse Application] C:\Program Fi —
v

. . Console

I1Sgris> Srarting eerwice consumer: or

3 = Run/Debut -

>e provid /Debug Debug Console Settings.

'S le.cxzt. Console 5)

IN| = paste culey [erySer [JFixed width console

5 Select All Cri+p [9Trame

(N1 amewor

15 Find/Replace... gfreme [Limit console output

(N1 n cont

- wuClear \gframe

1 tions Displayed tab width: 8

5 gframe

mil BEscrollLock :: i 0:: Show when program writes to standard out

; ; 1 gframe Show when program writes to standard error

NI G e e amvvanvauvinw viaanwa@ONS
Standard Out text color: E
Standard Error text color: E
Standard In text color: E
Background color: @
[Restore Defaults] [Apply]
S\
'\? ') [OK] [Cancel]

Figure 144 Modify the Console Buffer Capacity

If you are able to access the URL and see some XML output (the WSDL of the provider -
similar to Figure 145) the provider has started up correctly. You can continue and start
developing the consumer. If you take some time you will discover all the names in the WSDL
we defined in the interface (see section 20.6.1 Step 4).

160

http://localhost:9090/itutorialservice?wsdl

MODELBUS
ModelBus User Guide

1 http: flocalhost: 9090 it toriskservicsPwsdl S - B - =) @=h - Page~ Safety - Tool

<?xml version="1.0" ?=
- <wsdl:definitions name="ITutorialServiceService" targetNamespace="http://demo.tutorialservice"
xmins:ns1="http://schemas.xmlsoap.org/soap/htitp" xmins:soap="http:/ /schemas.xmlsoap.org/wsdl/soap/"
xmins:tns="http://demo.tutorialservice" xmins:wsdl="http:/ /schemas.xmlsoap.org/wsdl/"
xmins:xsd="http:/ /www.w3.0org/2001/XMLSchema"=>
- <wsdl:types>
- «xsd:schema attributeFormDefault="unqualified" elementFormDefault="unqualified"
targetNamespace="http:/ fdemo.tutorialservice" xmins:tns="http:/ fdemo.tutorialservice"
xmins:xsd="http:/ /www.w3.0rg/2001/XMLSchema"=>
=xsd:element name="myOperation" type="tns:myOperation" />
<xsd:complexType name="myOperation">
- «<xsd:sequence=
<xsd:element minOccurs="0" name="dummyString" nillable="true" type="xsd:string" />
</xsd:sequence>
</xsd:complexType>
<xsd:element name="myOperationResponse" type="tns:myOpera%DnResponse” /=
<xsd:complexType name="myOperationResponse":
- <xsd:sequencex
<xsd:element minOccurs="0" name="returnValue" nillable="true" type="xsd:string" /=
</xsd:sequence>
</xsd:complexType:>
</xsd:schemaz=
</wsdl:types=>
- =<wsdl:message name="myOperation">
zwsdl:part element="tns:myOperation" name="parameters" />
<fwsdl:message=>
- =wsdl:message name="myOperationResponse">
<wsdl:part element="tns:myOperationResponse" name="parameters" />
</wsdl:message=>
- «wsdl:portType name="TutorialService" >
- <wsdl:operation name="myOperation">
=wsdl:input message="tns:myOperation" name="myOperation" />
=wsdl:output message="tns:myQOperationResponse" name="myOperationResponse" />
</wsdl:operation=
<f/wsdl:portType=
- =wsdl:binding name="TTutorialServiceServiceSoapBinding" type="tns:TutorialService">
<soap:binding style="document" transport="http:/ /schemas.xmlsoap.org/soap/http" />
- «<wsdl:operation name="myOperation">
<soap:operation soapAction="http://demo.tutorialservice/TutorialService/myOperation"
style="document" />
- «wsdlrinput name="myOperation">
<soap:body use="literal" /=
</wsdl:input=
- =wsdl:output name="myOperationResponse">
<soap:body use="literal" />
<fwsdl:output=
</wsdl:operation=
</wsdl:binding >
- <wsdl:service name="ITutorialServiceService":=
- <wsdl:port binding="tns:ITutorialServiceServiceSoapBinding" name="TutorialServicePort">
<soap:address location="http:/ /localhost:9090/itutorialservice" /=
</wsdl:port=
</wsdl:service >
</wsdl:definitions=

Figure 145 The Provider WSDL

161

MODELBUS
ModelBus User Guide

20.6.3 Third Project - Consumer

A Since ModelBus release 1.9.6 you can use the “ModelBus Service from Existing
Interface” wizard to generate a provider and a consumer according to your service interface.
Please note that this feature is still in beta phase.

Step 1 — Create a new Eclipse Plug-in Project demo.tutorialService.consumer similar to step 1
in the provider adapter section and set its dependencies as shown in Figure 146.

= Package Explorer 23 ﬁ@f_PIug—ins =0 4k *demo, bukorialService,. consumer 28

= W = .
= % Dependencies
TéJ derno,kutarial3ervice . consumer
+ B8 JRE Svstem Library [JavasE-1.6]

Required Plug-ins

[arc
1= META-INF Speci_ﬁ.f the list of plug-ins required For the ope
[ord build, properties plugin.
+-%=r demo.tutorial3ervice, consurmer 2 ?;l;grg,e.;lipse,ui (3.5.2]
R derno,tutorial3ervice . descrpitor :ﬁ;]_;grg,Eclipse,cnre,runtime (3.5.00
#5325 demo.butorialService. provider 1= org modelbus. core lib.dosgi (1.9.5)

?;_'L;urg.mudelbus.du:usgi.serviu:es (1.9.5)
%;demcu.tutu:uriaIService.descrpitu:ur (1.0.0)

Figure 146 The Consumer Project and its Dependencies

Step 2 — Add a Java package named demo.tutorialService.consumer to the src folder.

Step 3 — Create a Java class Activator in demo.tutorialService.consumer similar to step 5 in
the provider project (second project).

Replace the generated Activator code with the following (if you choose a different naming
you must probably adapt it):

package demo.tutorialService.consumer;

import org.modelbus.core.lib.IRepositoryHelper;

import org.modelbus.core.lib.configuration.ModelBusServiceConfiguration;

import org.modelbus.core.lib.dosgi.api.AbstractModelBusAdapterConsumerActivator;
import demo.tutorialservice.descriptor.ITutorialService;

public class Activator extends AbstractModelBusAdapterConsumerActivator {
private static ITutorialService myservice;

public Activator() {

162

™ MODELBUS
ModelBus User Guide

Step 4 — Add “OSGI-INF” information

e Create a folder OSGI-INF in the root folder of the consumer project
e Create a folder remote-service in it

ow_n
S

e Create a xml-file remote-services.xml in it --- mind the additional

Open the xml-file with Text Editor (or switch to the source tab) and enter the following text
(possibly to be adapted in the highlighted lines):

<provide interface="demo.tutorialService.descriptor.|TutorialService" />

<property name="org.apache.cxf.ws.address">http://localhost:9090/itutorialservice</property>

Step 6 — Change MANIFEST.MF
163

™ MODELBUS
ModelBus User Guide

Include the OSGI-INF directory in the build configuration (see Figure 147).

& Plug-in Development - demo.tutorialservice.consumer/META-INF/MANIFEST.MF - Eclipse . - Dlﬂ
File Edit Mavigate Search Project Run Window Help
I 8-0 - [BEG- @S V|~ 0o g £ Pnoma. :
[£ Package Explorer £2 5 Plug-insl = 8 [1] mmutorialservice.jav [17_] Activator.java mm&“ |X| remote-services.xml]»3 = :
S = A . . oy -~
=R [Build Configuration O Le® 8=

= 3'7J demo. tutorialservice.consumer
B, IRE System Library [JavaSE-1.6]
B\ Plug-in Dependencies

@9 SIE: Runtime Information
(= icons Define the libraries, specify the order in which they should be built, and list the source folders that should be compiled into each selected library,

[custom Build

== META-IN

‘) MANIFEST.MF B ‘ Add Library... ‘ fidd Folder,

=-(= O5GIT ‘ ‘

. B remote-service ‘
|

i | X] remote-services,xml
@ build.properties
plugin. xml
[bJ demo.tutorialService.descriptor
& &7‘1 demo.tutorialService.provider

Down

Source Build
Select the Folders and files to include in the source build.

Binary Build
Select the folders and files to include in the binary build.

Ox

~O X project
O& settings

(= META-INF
L]L= bin

[%] .classpath
~O X project
O& settings
O & mETA-INF
O & osal-nF

O bin
-0 [&ié build.properties : D@ build. properties
M & icons #-E icons
5} plugin.xml ; D@ plugin. xml =

O& src O& src

v

—
Overview IDependendes |Runtime lExtensions |Extension Poinl% [ﬂ[I’ANIFEST.MF | plugin.xml \ build‘propertiesl

(@1 vt an [L Tt (19 Ducblame | Bl conccla 52 [mRlalsl -2 A - 72 - = A

Figure 147 Include OSGI-INF in the Build Configuration

Therefore, open the meta information of the project (MANIFEST.MF). Open the tab Build and
select the OSGI-INF directory and icons.

In the Overview tab select the Activate this plug-in... and set the activator

(demo.tutorialService.consumer.Activator) (see Figure 148).

164

MODELBUS
ModelBus User Guide

=] remote-services. zml <14 *demo.tutarialService, consurmer 4

4 Overview

General Information Plug
This section describes general information about this plug-in. The
I dermno, buborialervice, consumer 24
Wersion: 1.0.0.qualifier o
Marne: Cansurer -
Provider: Exte
Flatfarm Filker: This

. . . 5 =
ackivator: demo, butorialService . consumer ., Ackivator =]

Activate this plug-in when one of its classes is lnaded

This plug-in is a singleton

Test

Execution Environments
Specify the minimum execution environments required to run this plug-in, T:;
B JavasE-1.6 45
Expc

COverview | Dependencies | Runtime | Extensions | Extension Paoints | Build | MANIFEST.MF

Figure 148 Set Activator

Step 7 — Create a new run configuration for the project and name it TutorialServiceConsumer.
Refer to section Second Project — Provider — Step 8 for a detailed description. Be careful
when you correct the plug-ins. The demo.tutorialService.consumer plug-in needs to be
selected with Auto-start set to true. In addition, the org.modelbus.cxf.dosgi.startup bundle
has to be added to the run configuration. Please remember to add the required plug-ins to
the configuration by clicking the corresponding button in the dialog.

A To ensure that the consumer plug-in is able to find the service implementation, it is
required to be started at a higher start level than the org.modelbus.cxf.dosgi.startup plug-in.
Since the default start level in Eclipse is equal to 4, a start level >= 5 for the consumer bundle
is appropriate.

Step 8 — Run the consumer by executing its run configuration (do not forget to start the
server and run the provider before).

The execution of the testservice method will result in a console output of the Eclipse
workbench that runs the provider (see Figure 149).

165

MODELBUS
ModelBus User Guide

£ Plug-in Development - Eclipse

File Edt Navigate Search FProject Run Window Help
. B Q- Q- BHF G- @ S . .
$ Package Explorer 22 3 Plug-ins J
= = demo.tutoriaiService. consumer A
B RE System Library O Emorlog & Tasks |2 Problems) Console (3
B, Plug-n Dependencies TutonatServiceCorsumer [Ecipse Applcation] C:\Program Files Javalreéibinljay
¥ 19 src 28.05.2010 10:55:46 org.apache.cxf.dosgi.discove
* 2 Kons INFO: search for matches to trigger callk
¥ > META-INF ++Sending webservice message wvith params:
* = OSGI-INF Hello
o1 budd properties [?esuxr.: Hello Vorld]
<& phogn.ml
* b demo.tirorialService descrpRor v <

Figure 149 Consumer Results

20.6.4 Relations between the parts of the adapter realizations
How are all the previously developed projects (20.6.1 to 20.6.3) related to each other?

This should be sketched by following the flow in our small example.

An instance of the Activator class is executed whenever the consumer is started. It extends
the AbstractModelBusAdapterConsumerActivator which will realize the consumer side of the
ModelBus interaction pattern (see section 19.3).

The Activator Code:

package demo.tutorialService.consumer;

import org.modelbus.core.lib.IRepositoryHelper;

import org.modelbus.core.lib.configuration.ModelBusServiceConfiguration;

import org.modelbus.core.lib.dosgi.api.AbstractModelBusAdapterConsumerActivator;
import demo.tutorialservice.descriptor.ITutorialService;

public class Activator extends AbstractModelBusAdapterConsumerActivator {
private static ITutorialService myservice;

public Activator() {
super();

@Override

protected void serviceRegistered(Object arg0) {
myservice = (ITutorialService) arg0;
String result = myservice.myOperation("Hello");
System.out.printIn("Result: "+result);

166

MODELBUS
ModelBus User Guide @

@Override
protected void configure(ModelBusServiceConfiguration arg0) {
// TODO Auto-generated method stub

@SuppressWarnings("rawtypes")

@Override

protected Class getServicelnterface() {
return ITutorialService.class;

}

The highlighted operations (light grey) are the most important in our example — the
RepositoryHelper will not be used here but is of importance when using the repository:

e getServicelnterface() is used to determine which interface a service has to implement
to be used by the consumer. Thus, in this example, the method returns the service
interface ITutorialService.

e Within serviceRegistered(Object arg0) a service instance for the corresponding
interface will be populated. In this example, the service instance is stored in the
myservice variable. The myOperation method of the service will be invoked using the
actual parameter “Hello”. Afterwards, the result is printed out to System.out (shown
in the console window).

The myservice.myOperation method mentioned above is the one we realized within the
provider (see section 20.6.2). It has been described within the Interface (see section 20.6.1)
as a WSDL and exported. The communication between the consumer and provider based on
the ModelBus Interaction Pattern (see section 19.3) is mostly realized through the
AbstractModelBusAdapterConsumerActivator and the
AbstractModelBusAdapterProviderActivator interfaces delivered with the ModelBus.

Next have a look to the provider side. The coding needed for the example has been done in
section 20.6.2 and was quite simple.

The implementation of the service operation was quite simple:

package demo.tutorialService.provider;
import demo.tutorialService.descriptor.|TutorialService;
public class TutorialServicelmpl implements ITutorialService {

167

™ MODELBUS
ModelBus User Guide

The activator for the provider extends the AbstractModelBusAdapterProviderActivator and
implements two methods for our needs (both highlighted in the code below):

e creation of a service instance and
e provisioning of the service interface.

These will be used whenever a service instance or its service interface is needed.

protected Object createServicelnstance() {
return new TutorialServicelmpl();

}

protected Class getServicelnterface() {
return ITutorialService.class;

}

168

™ MODELBUS
ModelBus User Guide

169

MODELBUS
ModelBus User Guide

21. ModelBus Exception Specifications

Within in the ModelBus Core Lib several exception types are defined as follows:
RepositoryException

The RepositoryExecption is an abstract exception and has an attribute description whose
value should contain a short report why an exception has been thrown. Every further
exception in this specification is derived from RepositoryException.

RepositoryRuntimeException

The repository throws a RepositoryRuntimeException whenever an error occurs in the
runtime of the repository or no other repository exception of this specification is adequate
and relevant in order to describe the defect correctly.

LockedException

The LockedExecption will be thrown when a user performs an action on a locked artifact and
the action could change the model.

InvalidRevisionException

When an action is about to perform on an unresolved version number of a revision the
InvalidRevisionException will be thrown.

RepositoryAuthentificationException

An invalid user authentication, due to an invalid user and password combination, leads to a
RepositoryAuthentificationException. When this exception is thrown the description value
doesn’t contain a report which leads to an invalid parameter (user or password) of a user.

NonExistingResourceException

The NonExistingResourceException is thrown whenever an operation is performed on an
artifact with an unknown URL namespace in the context of the repository.

UnresolvedReferencesException
Todo description
ConstraintViolationException

Todo description

170

MODELBUS
ModelBus User Guide

InvaildValueException

Whenever an invalid value is passed as an actual parameter to any ModelBus Core Lib
operation an InvalidValueException will be thrown.

InvalidServiceDescriptionException

The InvalidServiceDescriptionException is thrown, when the data describing a service to be
registered to the repository is not valid.

171

MODELBUS
ModelBus User Guide

22. Trouble Shooting Guide

Problem: When trying to obtain the WSDL of the ModelBus itself or one of its services, the
following exception occurs:

org.apache.cxf.binding.soap.SoapFault: "http://schemas.xmlsoap.org/wsdl/",
the namespace on the "definitions" element, is not a valid SOAP version.

Solution: Please make sure that you do not have added a query string (e.g. “?wsd/l”) to the
value for the system variable MODELBUS _REPOSITORY_LOCATION or to the corresponding
location in the configuration model in case of ModelBus release 1.9.7 or higher. If this did
happen, please remove it and restart the ModelBus Server as well as the Team Provider
client and ModelBus adapter and consumer instances.

Problem: ModelBus Server did not start (the first time), bundle is not active

Solution 1: When using a local repository please ensure, that the
MODELBUS_SVN_REPOSITORY_LOCATION environment variable (or the corresponding
location in the configuration model in case of ModelBus release 1.9.7 or higher) is pointing to
an empty directory.

Solution 2: Ensure that the SVNKit libraries are available for the ModelBus server (see
chapter 3).

Solution 3: If you are using the IP address “0.0.0.0” as repository host (repository location),
please make sure that the specified port is not already in use in case of each network
interfaces installed on the machine and that the server has sufficient rights to use the port.
There may also be another configuration problem with one of the network interfaces. Please
ask your administrator in this case.

172

™ MODELBUS
ModelBus User Guide

173

Appendix B

A more complex Consumer / Provider
Adapter Implementation Example

23. A more complex Consumer / Provider Adapter

The principles of the creation and implementation of a consumer and a provider adapter for
a service based on the ModelBus has been described in section 20.6 with a first simple
example. The principles of the communication in the context of the ModelBus are described
in section 19 in particular the ModelBus Interaction Pattern (see section 19.3), the consumer
/ provider adapter concepts (see section 19.4 & 19.5) and the support offered through the
ModelBus Core Lib (see section 19.6).

Within this section a more complex example for a consumer / provider adapter shall be
shown.

23.1 How to get the example

The example may be downloaded from the ModelBus website (www.modelbus.org). It

consists of four Eclipse projects to be imported:

e org.eclipse.emf.library.example

e org.modelbus.library.example.serviceinterface
e org.modelbus.library.example.service

e org.modelbus.library.example.consumer

The first project contains the Library meta-model. It is based on the well-known Eclipse
library meta-model (see section 23.2.1). The second project provides the interface definition
for the service (see section 23.2.2). The third contains the service provider adapter (see
section 23.2.3) and the last one the consumer adapter (see section 23.2.4).

The service is using the OSLO OCL processor, which is delivered in three JAR files that has to
be copied to the Eclipse plugins folder of the Eclipse where the projects above have been
imported to.

The Eclipse to be used should be a modeling distribution of Eclipse with ModelBus installed
(see section 4).

To execute the adapter example a ModelBus server needs to be installed and running (see
section 3).

The service provider adapter and consumer adapter will be started using a specific Run
Configuration (see Figure 150). Please see also the base description in sections 20.6.2 and
20.6.3).

http://www.modelbus.org/

MODELBUS
ModelBus User Guide

& Run Configurations gl
Create, manage, and run configurations —
Create a configuration to launch an Eclipse application, (I ;)

Mame: | LibraryService

=] Main [69= Arguments | “2 Plug-ins Corfiguration | & Tracing | B Ervirerment | F= Comman
B acclea Application
(ATL Transformation Launch with: |plug-ins selected below only - Default Start level: | 4 = Default Auto-Start: |False

= 4@ Eclipse Application

type filker text Select all

ce Plug-ins Start Level Auto-Start | &
2l Java Applat = |:|\’u Workspace

l‘t‘ Java ADDNCBUOH_ [] 0= org.edipse.emf.library.example (1.0.00 default default Add Working Set. ..
B JET Transfarmation 1= ara.modelbus library. example. consumer {1,0.0. qualifier)

Deselect Al

‘;}; JLIn?t) [#]=&= org.modelbus. library. example. service (1.0.0.qualfier) default true Add Required Plug-ins
Ju Junit Plug-in Test [#]<0= arg.modelbus library. example. serviceinterface {1.0.0.qualifier) default default R
WIWE WarkFlow estore Defaults
P ' =] |:|\’u Target Platform
4 Qperational QUT Inkerpreter [1% com.goodle.collect (0.8.0.+200908120607)
o ©56i Framework 1% com.gaogle.quice (1.0.1,+200906120607)
~l'—" Task Context Plug-in Test [Z] %= com.ibr.icu (4.0.1.v20090822) default default
Juy Task Cortext Test [J%= comjeraft.jsch (0.1.41.vZ00903070017)

D?‘P‘ javax.ackivation (1,1,0,+200806101325)
D?‘]? javax.mail {1.4.0,v200804091730)
D?&‘ javax.persistence (1.99,0,v200206021518)

[Z] %= javax.serviet (2.5.0.4200806031605) default default
)
;J:‘].avax.sarv\et.].sp (2.0.0,v200806031607) default default @y sy seterdied] i
[#] 5= javax kransaction (1.1.1,%201002111330) defaul False &
— P ce AP 106 out of 1121 selected

[¥]Include optional dependencies when computing required plug-ins
[] Add new workspace plug-ins ko this launch configuration automaticalky

[]validate plug-ins automatically priar b launching Walidate Plug-ins
Filter matched 15 of 15 items

©

Figure 150 Defining the Run Configurations

For this specific example we have to select the following plug-ins:

e for the service provider (LibraryService)
o org.modelbus.library.example.service
o org.modelbus.cxf.dosgi.startup
e for the service consumer (LibraryConsumer):
o org.modelbus.library.example.consumer
o org.modelbus.cxf.dosgi.startup

Please note that the auto start values for both, the provider and the consumer plug-in, are
required to be set to true. In addition, in both cases we have to include all additionally
required plug-ins by using the “Add Required Plug-Ins” button.

A To ensure that the consumer plug-in is able to find the service implementation, it is
required to be started at a higher start level than the org.modelbus.cxf.dosgi.startup plug-in.
Since the default start level in Eclipse is equal to 4, a start level >= 5 for the consumer bundle
is appropriate.

178

MODELBUS
ModelBus User Guide

23.2 The Library Service

The library service will allow us to manipulate and check the validity of instances of the
Library meta-model (see section 23.2.1) through the ModelBus. It offers the following
methods through its LibraryService interface (see section 23.2.2):

e to manipulate a library model
o addWriter()
Accepts a library model and a name of a writer and adds a writer with that
name to the library model.
o getWriters()
Accepts a library model and returns all writer instances contained in it (as an
array).
o getLooseWriters()
Accepts a library model and returns all writer instances not associated to any
book contained in the library (as a list).
e to check the validity
o isLibraryModelValid()
Checks the validity of the library model due to some OCL constraints
hardcoded in the server - returns true or false.

The operations implementing the interface will be coded in the provider adapter (see section
23.2.3). The rules / constraints being checked will also be coded as OCL expression in the
provider adapter and checked there.

The operations will be invoked from the consumer adapter through ModelBus. The first
(empty) library model will be created in the consumer adapter and checked in from there to
the ModelBus repository - due to the ModelBus Invocation Pattern - implicitly (see section
23.3.3 for details).

23.2.1 The Library Meta Model

The library service is based on the well-known Eclipse library meta model (see Figure 151). It
describes a “library” as an aggregation of “books” and “writers” which are related by an
“author” relation.

179

™ MODELBUS
ModelBus User Guide

< <enumeration =
g writer 2 BookCategary
= name : ESiring = Mystery
= ScienceFiction
1 - Biography
authgr
]”*
W iters
hooks
a..
H Book
o title : EString 0..* H Library

= pages | Elnt
o category @ BookCategory

hooks o name : EString

Figure 151 The Library Meta Model

23.2.2 The Service Interface

The definition of the service interface needed for DOSGi is shown in Figure 152. This
corresponds to the first project within our basic adapter implementation description (see
section 20.6.1). The interface name, the operation names and there corresponding Java
operations are highlighted within the code.

LibraryService

180

™ MODELBUS
ModelBus User Guide

isLibraryModelValid
isLibraryModelValid

getWriters

List<Writer> getWriters

getLooseWriters
List<Writer> getLooseWriters

Figure 152 The Service Interface Definition (DOSGI) (LibraryService.java)

The interface description in the Java interface (DOSGi) results in the WSDL interface
description shown in Figure 153 (excerpt). When the service is running, the WSDL can be
retrieved by using a web browser and invoking http://localhost:9090/libraryservice?wsdl.

181

http://localhost:9090/libraryservice?wsdl

MODELBUS

ModelBus User Guide

&9 LibraryService
i BlibraryModeivabd
[input paramebers [&] isLibraryhiodedyald
11 putput parameters &) isLibraryiModelyalidResponse
#§ gebWriters
[:}‘.:i'put paramebérs L&) getWriters
\.I]-lﬂl.ltm[paramebers L&) getWritersResponse

getLoose\Writers

[#linput parameters L&) getlooseWriters

] aukput paramibers L&) getloose'WritersResponse
addWriter

Erlinput parameters | [2] addwriter

£ output paramebers [&] addwriterResponse

Figure 153 The Service Interface as WSDL (Shown in a WSDL editor)

23.2.3 The Service Provider Adapter

For the basic concepts of the service provider adapter see section 20.6.2. In the library
example shown here the service provider adapter (org.modelbus.library.example.service)
consists of four Java classes:

e Activator.java and LibraryServicelmpl.java
comprising the main parts of the service provider adapter

e OsloOCLEvaluator.java and ExceptionLog.java
are the classes that are used by the service adapter for the validation of the model
based on OCL

The complete source code is shown in section 23.3.2 and will be explained here partially.

The activator is as simple as in the example in section 20.6.2. It implements four operations
of the abstract AbstractModelBusAdapterProviderActivator class. Most important is that
getServicelnterface() and createServicelnstance() relate to our LibraryService and its
implementation.

package org.modelbus.library.example.service;
import org.modelbus.ModelBusServiceConfiguration;
import org.modelbus.core.lib.dosgi.AbstractModelBusAdapterProviderActivator;

import org.modelbus.core.lib.dosgi.RepositoryHelper;

public class Activator extends AbstractModelBusAdapterProviderActivator {

182

™ MODELBUS
ModelBus User Guide

protected Class getServicelnterface() {
return LibraryService.class;

| e
protected Object createServicelnstance() {
return new LibraryServicelmpl();

The LibraryServerimpl.java is more interesting. It implements all the operations on the model
(surrounded red) and the validation functions (surrounded green) accessible through the
service interface (see Figure 154).

package org.modelbus. library.example. service:

#import java.io.I0Exception:[]

public class LibraryServicelImpl implements LibraryService |
private OsloOCLEvaluator evaluator:

L public LibraryServiceImpl () ([]
L private final static String[] OCL_EXPRESSIONS = new String(]([]

private final static String OCL_WRITER VALID = “context Writer inv: self.name.size() > 0%;

Ee Ip'nb.'l_'l.n void addiriter (fimal Library library, final String nﬂ]]lﬂ

= & ic Lisc<Weiter> tLooseVriters (Libracy librar i

S |mu= List<Writer> getWriters(final Libracy library) ()]

= [hﬂh‘l.l.c boelean isLibraryModelValid(final Libracy libracy) ([] I

] private void initializedCLFrocessor()([]
* private Session getSession() ([]

L private static List<Writer> toWriterLisc(Lisc<Object> list)i[]
H

Figure 154 LibraryServicelmpl.java outline

183

MODELBUS
ModelBus User Guide

For the communication with the ModelBus repository we need a session object set up within
the getSession() method:

private Session getSession(){
Session session = new Session();
session.setld(EcoreUtil.generateUUID());
Property propertyUserName = new Property();
propertyUserName.setKey("username");
propertyUserName.setValue("Admin");
Property propertyPassword = new Property();
propertyPassword.setKey("password");
propertyPassword.setValue("ModelBus");

session.getProperties().add(propertyUserName);
session.getProperties().add(propertyPassword);

return session;

The usage of the ModelBus CoreLib APl (see section 19.6) shall be illustrated with a look
inside the addWriter() method implementation:

@Override

public void addWriter(final Library library, final String name) {
final Writer writer = LibraryFactory.eINSTANCE .createWriter();
writer.setName(name);

library.getWriters().add(writer);

final Resource res = library.eResource();

try {

ModelBusCorelib.getRepositoryHelper().checkinModel(this.getSession(), res,
res.getURI());
} catch (Exception e) {
throw new RuntimeException(e);

}

It uses the Java code generated (see Figure 155) from the Library meta model (/ibrary.ecore)
in the org.eclipse.emf.library.example project (highlighted green) and invokes the

184

™ MODELBUS
ModelBus User Guide

checkinModel() operation of the ModelBus Core Lib (highlighted blue). As one can see, the
original library model will be passed to the operation as a parameter, a new writer model
element will be added and finally the new version of the model will be checked in to the
repository explicitly.

T
] Package Explarer Eﬁ@\& Hierarchﬂ =8 B library, ecore
<'}==D|ﬁiv E s e Model Cad
= Lenerare Model _ode
E@ ?ég.eclipse.emF.Iibrarv.example = Igl GeneraMeEdit Code
[+ src : ;

: . Generate Editor Code
B JRE System Library [JavasE-1.6] g conerate Test Code
= Plug-in Dependencies :

EE META-TNF =28 Generate All
EE rnadel Open »
.] library.ecare Open Ecare

. %] library. ecorediag Cipen GenfModel

e @ libtary, genmodel

Figure 155 Generate Model Code from the Meta Model

All other LibraryService interface operation implementations make use of OCL to query and
retrieve model elements from the library model or to validate the model.

The use of OCL for querying shall be illustrated using the getLooseWriters() operation:

public List<Writer> getLooseWriters(Library library)

185

MODELBUS
@ ModelBus User Guide

First it adds the model to the (OCL) evaluator created at the beginning and initializes the OCL
processor (highlighted green). An OCL expression is defined (String ocl) which itself uses a
helper function defined earlier (highlighted blue). The helper function will retrieve all writers
from the model that have no relation to any book. These OCL expressions are evaluated
(highlighted orange) and the result is converted to a list.

Finally a validation function shall be illustrated through the isLibraryModelValid() operation:

@Override
public boolean isLibraryModelValid(final Library library) {
evaluator.addModel(library.eClass().getEPackage());

boolean valid = true;

//check if library contains writers
final List<Object> results1 = this.evaluator.evaluateExpression(library,
"context Library inv: self.writers->notEmpty()");

if((Boolean)results1.get(0) == false){
System.out.printin("Model is invalid: no writers");
valid = false;

}

//check if library contains not more than 3 writers
final List<Object> results2 = this.evaluator.evaluateExpression(library,
"context Library inv: self.writers->size() < 4");

if((Boolean)results2.get(0) == false){
System.out.printin("Model is invalid: more than 3 writers");
valid = false;

}

//check if all writer names are not empty
final List<Object> results3 = this.evaluator.evaluateExpression(library,
"context Library inv: self.writers->select(w:Writer | w.name.size() = 0)->isEmpty()");

if((Boolean)results3.get(0) == false){
System.out.printin("Model is invalid: empty writer name detected");
valid = false;

}

return valid;

186

MODELBUS
ModelBus User Guide

In the first step the library model is added to the evaluator. Then the evaluator is invoked to
evaluate an OCL expression, stated directly in the code (see also the comments in the code
above for the OCL constraints). A negative result of an evaluation is printed to the server
console log.

For details of the complete service provider adapter implementation including the OCL
evaluator helper classes see section 23.3.2.

23.2.4 The Service Consumer Adapter

As last step a closer look into the consumer adapter should be made. The only class
implemented here is the consumer Activator.java in the org.modelbus.library.example.
consumer project.

The consumer Activator.java outline looks quite simple (see Figure 156).

& Package Explorer &3 “fg Hierarchy =g [J] LibraryServiceImpl java 1] Activator.java &3

= <')==D package org.modelbus.library.example.service;

= bJ org.edipse.emf library. example
=5 org.modelbus, library example, consumer
+- B, JRE System Library [JavaSE-1.6]
+-E, Plug-in Dependencies
=5 sre
= org.modelbus.library example. service
+- 1) Activator,java
(= META-INF
(= o5GI-INF
|mb build. properties
LibraryConsumer launch
org.modelbus. library example. service
org.modelbus. library . example. serviceinterface

Fimport java.io.IO0Exception:[]
public class Activator extends lbstractModelBusidapterConsumerlotivator {
private RepositoryHelper repoHelper;

s @ protected void serviceRegistered(Ohject service) ({[]

T

m

(& @ protected void configure (ModelBusServiceConfiguration config) {[]
= bd (& @ protected Class getServicelnterface() {[]

=R

o @ public void registerRepositoryHelper (RepositoryHelper helper| {[]

Figure 156 The Consumer Activator.java Outline

The complete code can be inspected in section 23.3.3. The registerRepositoryHelper()
method registers the helper necessary to use the ModelBus Core Lib. The
getServicelnterface() returns the interface to be used to the service - in our case the
LibraryService interface, which is required to access and use it.

All the work the consumer does in the example is implemented in the serviceRegistered()
operation. This should be discussed in more detail now.

An overview of all the code in the operation is given first. It will afterwards be explained
block by block.

@Override
protected void serviceRegistered(Object service) {

187

MODELBUS
ModelBus User Guide

Session session = new Session();

session.setld(EcoreUtil.generateUUID());

Property propertyUserName = new Property();

propertyUserName.setKey("username");

propertyUserName.setValue("Admin");

Property propertyPassword = new Property();

propertyPassword.setKey("password");

propertyPassword.setValue("ModelBus");
session.getProperties().add(propertyUserName);

session.getProperties().add(propertyPassword);

final LibraryService libraryService = (LibraryService)service;

final ResourceSet set = new ResourceSetimpl();
final Resource resl =
set.createResource(URl.createURI("http://library.modelbus.org/demo.library"));

final EPackage p = LibraryPackage.e/NSTANCE;

Library library = LibraryFactory.eINSTANCE .createlLibrary();
library.setName("Demo library");

resl.getContents().add(library);

System.out.printin("Performing library service: isLibraryModelValid");
boolean modelValid = libraryService.isLibraryModelValid(library);

System.out.printin("Model valid: " + modelValid);

final String[] writerNames = new String[] { "Peter York", "Susan Oxford", "Brian
Woodstock", "Catherine Jones", "" };

for(final String writerName : writerNames){
System.out.printin("Performing library service: addWriter " + writerName);
libraryService.addWriter(library, writerName);

//checkout modified library
final Resource res2 =
set.createResource(URl.createURI("http://library.modelbus.org/demo.library"));

try {
ModelBusCorelLib.getRepositoryHelper().checkOutModel(session,

res2);
} catch (Exception e) {
throw new RuntimeException(e);

188

ModelBus User Guide

m MODELBUS

}

library = (Library)res2.getContents().get(0);

for(final Writer writer : library.getWriters()){
System.out.printin(writer);

}

System.out.printin("Performing library service: getWriters");
final List<Writer> writers = libraryService.getWriters(library);

System.out.printIn("Writers:");
System.out.printin("========");

for(final Writer currentWriter : writers){
System.out.printin(currentWriter.getName());

}

System.out.printIn("Performing library service: isLibraryModelValid");
modelValid = libraryService.isLibraryModelValid(library);

System.out.printIn("Model valid: " + modelValid);

The first block defines and sets up the information for the session to be used by the

ModelBus Core Lib operations (see section 19.6) afterwards:

@Override

protected void serviceRegistered(Object service) {
Session session = new Session();
session.setld(EcoreUtil.generateUUID());
Property propertyUserName = new Property();
propertyUserName.setKey("username");
propertyUserName.setValue("Admin");
Property propertyPassword = new Property();
propertyPassword.setKey("password");
propertyPassword.setValue("ModelBus");

session.getProperties().add(propertyUserName);

session.getProperties().add(propertyPassword);

189

MODELBUS
ModelBus User Guide

Within the next block access to the Library Service is provided and a resource set with one
specific resource (resl) is created. The URI of this resource is of importance later on. An
empty library model named “Demo Library” is created and added to the resource (res1).

final LibraryService libraryService = (LibraryService)service;

final ResourceSet set = new ResourceSetimpl();

final Resource resl =
set.createResource(URl.createURI("http://library.modelbus.org/demo.library"));

final EPackage p = LibraryPackage.e/INSTANCE;

Library library = LibraryFactory.e/NSTANCE .createLibrary();
library.setName("Demo library");

resl.getContents().add(library);

The next block is quite short but very important with concern to the ModelBus and the
ModelBus repository:

System.out.printIn("Performing library service: isLibraryModelValid");
boolean modelValid = libraryService.isLibraryModelValid(library);

System.out.printin("Model valid: " + modelValid);

It checks the validity of the library model we created so far by invoking the
isLibraryModelValid() operation. This is the first use of the Library Service through the
ModelBus. No explicit check-in of the library model took place so it is not stored in the
repository up to now. At this moment the ModelBus Interaction Pattern (see section 19.3) is
of importance.

Whenever an element of type EObject, IModelBusDataSource, Resource or an array or
collection of elements of those types is given (as input or return) of an operation signature
invoked as a service operation through ModelBus the “ModelBus invocation controller” gets
into action.

At the invocation side the respective objects are checked into the repository and an URI is
returned for it (reference to the object in the repository). The object in the invoked operation
is replaced by the URI and the request passed to the service. At service side the referencing
URI is used to check-out the original object again and replace the URI automatically by the
original objects from the invocation. The checked in object is kept in the repository.

190

MODELBUS
ModelBus User Guide Eﬂ

How does the invocation controller create an URI for the object checked in implicitly?

In our specific case we have added the library used as the parameter passed to a resource
(res1) in a resource set. For this resource an URI has been created explicitly. This URI will be
used for the implicit check-in.

The next block is a loop. Its contained code (highlighted light blue) is executed for every
writer name defined in the array at the top:

final String[] writerNames = new String[] { "Peter York", "Susan Oxford", "Brian Woodstock",
"Catherine Jones", "" };

for(final String writerName : writerNames){
System.out.printin("Performing library service: addWriter " + writerName);
libraryService.addWriter(library, writerName);

//checkout modified library
final Resource res2 =
set.createResource(URl.createURI("http://library.modelbus.org/demo.library"));

try {
ModelBusCorelLib.getRepositoryHelper().checkOutModel(session,

res2);
} catch (Exception e) {
throw new RuntimeException(e);

}

library = (Library)res2.getContents().get(0);

for(final Writer writer : library.getWriters()){
System.out.printIn(writer);

}

System.out.printIn("Performing library service: getWriters");
final List<Writer> writers = libraryService.getWriters(library);

System.out.printin("Writers:");
System.out.printin("========");

for(final Writer currentWriter : writers){
System.out.printin(currentWriter.getName());

}

System.out.printIn("Performing library service: isLibraryModelValid");

191

MODELBUS
ModelBus User Guide

modelValid = libraryService.isLibraryModelValid(library);

System.out.printin("Model valid: " + modelValid);

For the ease of understanding the inner block of the loop shall be partitioned into blocks and
explained block by block. The partitioning shall be done as follows:

final String[] writerNames = new String[] { "Peter York", "Susan Oxford", "Brian Woodstock",
"Catherine Jones", "" };

for(final String writerName : writerNames){

//checkout modified library
final Resource res2 =
set.createResource(URl.createURI("http://library.modelbus.org/demo.library"));

try {
ModelBusCorelib.getRepositoryHelper().checkOutModel(session,

res2);
} catch (Exception e) {
throw new RuntimeException(e);

}

library = (Library)res2.getContents().get(0);

for(final Writer writer : library.getWriters()){
System.out.printin(writer);

}

System.out.printin("Performing library service: getWriters");
final List<Writer> writers = libraryService.getWriters(library);

System.out.printIn("Writers:");
System.out.printin("========"),

for(final Writer currentWriter : writers){
System.out.printin(currentWriter.getName());

}

192

MODELBUS
ModelBus User Guide

System.out.printin("Performing library service: isLibraryModelValid");
modelValid = libraryService.isLibraryModelValid(library);

System.out.printin("Model valid: " + modelValid);

The first block in the loop invokes the addWriter() operation of the library service:

For the first time in the loop we will start with the empty library model added to resource
res1. The ModelBus Invocation Pattern will cause it to be checked in again but with the same
URI of res1 but as a new head version. The Library Service operation implementation of
addWriter() will add the writer and will check the new version of the model into the
repository using the same URI as one can see from the server side code (complete code see
section 23.3.2):

@Override

public void addWriter(final Library library, final String name) {
final Writer writer = LibraryFactory.e/INSTANCE.createWriter();
writer.setName(name);

library.getWriters().add(writer);

final Resource res = library.eResource();

try {

ModelBusCorelib.getRepositoryHelper().checkinModel(this.getSession(), res,
res.getURI());
} catch (Exception e) {
throw new RuntimeException(e);

}

Now the model has been changed. To continue at the consumer side we have to explicitly
check it out there since we did not pass it back as a return parameter. This is done in the

following code block:

//checkout modified library

193

MODELBUS
ModelBus User Guide

final Resource res2 =
set.createResource(URl.createURI("http://library.modelbus.org/demo.library"));

try {
ModelBusCorelLib.getRepositoryHelper()..checkOutModel(session,

res2);
} catch (Exception e) {
throw new RuntimeException(e);

}

library = (Library)res2.getContents().get(0);

for(final Writer writer : library.getWriters()){
System.out.printin(writer);

}

At the beginning we create a new resource (res2) with the same URI to access the same
repository object but the newest version. The library model is returned within the resource
res2 and we assign it to the “library” object we have added to resource res1. Finally, we print
all writers we got with the new library model -- at the first time it should just be “Peter York”.
This is done from the local library model instance.

Then, within the next block, the writers will be retrieved from the model using the service
operations — first as a list and then as an array.

System.out.printin("Performing library service: getWriters");
final List<Writer> writers = libraryService.getWriters(library);

System.out.printIn("Writers:");
System.out.printin("========");

for(final Writer currentWriter : writers){
System.out.printIn(currentWriter.getName());

}

Every time the “library” model is passed to the service as a parameter and therefore checked
in implicitly. This is no problem with the size of the repository since it only stores the
differences but might increase the execution time. So be careful with the definition of the
service interface and keep the invocation pattern in mind. The model is not modified and
checked in again at the server side by the getWriters() operations therefore there is no need
to check it out again at the consumer.

194

MODELBUS
ModelBus User Guide m

Within the last block only the validity of the model is checked which will not change the
model:

System.out.printin("Performing library service: isLibraryModelValid");
modelValid = libraryService.isLibraryModelValid(library);

System.out.printin("Model valid: " + modelValid);

Then the next loop starts adding a new writer and changing the model which has to be
checked out again ...

A lot of printing to the console log is done from the consumer as well as from the producer
adapter. The flow of the execution within the example can be followed there. Keep in mind
that separate console windows for the consumer and producer exist — so you have to switch
them to see both outputs.

A look into the ModelBus repository after the execution of the library service consumer
adapter will show the following situation:

i-He it i (EMl: e £ | [Modelus Rep...
[1 ModelBus Repositary 52 = O || £ dema.library [ReviHEAD] 52
Q:><‘.¢, = "E <?xml wersion="1.0" encoding="UTF-5"2>

5 3 . 4 { = 1 =" " . =" -
(= Test-MR 9 <org.eclipse.example. library:Library xmi:version="2Z.0" xmlns:xmi="http://vww.o:

== library.modelbus,org 113

demo.library 113
=== org 11

== eclipse 11
= [= example 11
= library.ecore 11
=8 library
= H Book

O Litle : ESkring
= pages : EInt
= category : BookCate
5* author : Writer
Library
= name : EString

<Writers name="Peter York"/:»
<Writers name="3usan Oxford"/ />
<writers name="Brian Woodstock"/>
<writers name="Catherine Jones"/:
<Writers name=""/>
</org.eclipse.example. library:Librarys>

T

52 writers © Writer

2 books : Book,

Writer

= name : ESkring

5 books : Book, I
#- 2 BookCategory

#-[= www.modelbus.org & ¢

-1 & F-F-00 EH--E-E

+

== www eclipse.org 10 = =
== emf IDD ? F: ModelBus Repositary Browser 20 /) History | |5 ModelBus Properties

== 2002 10 hkp: fflibrary.modelbus. org
Ecare 10 Tame Revision Last Changed &k Last Changed By Size | Has Properties
dermalibrary 113 17.06.10 14:03 kde 432

Abbildung 1 Resulting Library Model

The library meta-model can be found as well as the Ecore meta-model used to define it.
Opening the demo.library model in the text editor shows the content as XML.

195

MODELBUS
ModelBus User Guide

23.2.5 Direct Invocation of the Service using the WSDL

The service interface has been defined in section 23.2.2. A WSDL can be retrieved from the
running service by entering http://localhost:9090/libraryservice?wsdl| in a web browser and
saving the (XML) result.

The WSDL can be inspected using a WSDL editor, e.g. the one from the eclipse Web Tool
Platform (WTP) project used here. This is possibly easier then reading the XML file directly.

£ ibraryservice.wed C

& LibraryServiceService =] 0 LbraryService
= Libw sryServicePork i isLibrarytodedyalid
hittp: fflocalhost: SO0 fibr... L+linput parameters [€] ilibraryModelyalid
1] pustpist P paramsters 2] sLibraryModshshdResponse
§# getWriters
(1input parameters [€] getWiiers
11 output parameters [€] getWrikersResponse
8 warkersvakid
£ input ¢ parameters [2] getlooseVrkers
Qll output ¢ parameters [2] getloossWWrkersResponse
% addwiker
B¥linpat ¢ porameters | [€] addwriter
11 output ¢ parameters | [€] addWriterResponse

Figure 157 The Library Service WSDL Interface

A closer look at the input parameters, e.g. of the addWriter() operation, shows the following
picture:

Q]output | [parameters [8] getLooseritersResponse

8 addititer EE Qutline &3 =
[»]input: [parameters [2] addviriker wadd\h‘riter - |
11 output [parameters [8] addwwriterResponse

addwriter

[] library [0..1] string
[8] name [0..1] string

hittp: fhaaese modelbus orgflibrary Service | Cpen In Mew Editar

Figure 158 Input Parameters of the addWriter Operation in the WSDL

196

http://localhost:9090/libraryservice?wsdl

MODELBUS
ModelBus User Guide

Instead of being of type library the first parameter is of type string, but its name is still
library. The reason for this is that the service expects the parameters with respect to the
ModelBus Interaction Pattern but the implicit actions (check-in and replacement by an URI)
at the consumer side are not performed automatically. So the service does not expect the
library model directly as a parameter here but instead of it an URI for it in the ModelBus
repository.

Using the WSDL of the service directly requests:

e to have an explicit and more detailed description of the service WSDL stating the
semantics of the operation parameters and

e to perform the eventually necessary check-in/checkout operations at the consumer
side explicitly .

23.3 The Source Code of the Java Adapter Implementation Classes used

In this section the complete source code for the library service example is listed without any
additional information.

23.3.1 The Library Service Interface
LibraryService.java:

package org.modelbus.library.example.service;
import java.util.List;

import javax.jws.WebMethod;
import javax.jws.WebParam;

import javax.jws.WebResult;
import javax.jws.WebService;

import library.Library;
import library.Writer;

@WebService (targetNamespace = "http://www.modelbus.org/LibraryService/",
name = "LibraryService")
public interface LibraryService {
@WebMethod (action =
"http://www.modelbus.org/LibraryService/addWriter")
public void addWriter (
@WebParam(name = "library", targetNamespace =
"http://www.modelbus.org/LibraryService/")
Library library,
@WebParam(name = "name", targetNamespace =
"http://www.modelbus.org/LibraryService/")
String name

)7

@WebMethod (action =
"http://www.modelbus.org/LibraryService/isLibraryModelvalid")

197

MODELBUS
ModelBus User Guide

@WebResult (name = "valid", targetNamespace = "")
public boolean isLibraryModelValid (
@WebParam(name = "library", targetNamespace =

"http://www.modelbus.org/LibraryService/")
Library library
)

@WebMethod (action =
"http://www.modelbus.org/LibraryService/getWriters™)

@WebResult (name = "writers", targetNamespace = "")
public List<Writer> getWriters(
@WebParam(name = "library", targetNamespace =

"http://www.modelbus.org/LibraryService/")
Library library
)

@WebMethod (action =
"http://www.modelbus.org/LibraryService/getLooseWriters")

@WebResult (name = "looseWriters", targetNamespace = "")
public List<Writer> getLooseWriters (
@WebParam(name = "library", targetNamespace =

"http://www.modelbus.org/LibraryService/")
Library library

) ;

23.3.2 The Service Provider Adapter
Activator.java:

package org.modelbus.library.example.service;

import org.modelbus.ModelBusServiceConfiguration;

import
org.modelbus.core.lib.dosgi.AbstractModelBusAdapterProviderActivator;
import org.modelbus.core.lib.dosgi.RepositoryHelper;

public class Activator extends AbstractModelBusAdapterProviderActivator ({
@Override
protected void configure (ModelBusServiceConfiguration config) {
config.setServiceName ("ModelBus library demo service");

}

@SuppressWarnings ("unchecked")

@Override

protected Class getServicelInterface() {
return LibraryService.class;

}

@Override
protected Object createServicelnstance() {
return new LibraryServiceImpl () ;

}

@Override
public void registerRepositoryHelper (RepositoryHelper helper) {
// do nothing

198

MODELBUS
ModelBus User Guide

LibraryServicelmpl.java:

package org.modelbus.library.example.service;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import org.eclipse.emf.ecore.resource.Resource;

import org.eclipse.emf.ecore.util.EcoreUtil;

import org.modelbus.core.lib.dosgi.ModelBusCorelLib;
import org.modelbus.dosgi.repository.descriptor.Property;
import org.modelbus.dosgi.repository.descriptor.Session;

import library.Library;
import library.LibraryFactory;
import library.Writer;

public class LibraryServiceImpl implements LibraryService {
private OsloOCLEvaluator evaluator;

public LibraryServiceImpl () {
this.evaluator = new 0OsloOCLEvaluator();

}

private final static String[] OCL EXPRESSIONS = new String[] {
"context Library def: getWriters() : Set (Writer) =
self.writers",
"context Library def: getLooseWriters() : Set(Writer) =
self.writers->select (w:Writer | w.books->isEmpty())"

}s

private final static String OCL WRITER VALID = "context Writer inv:
self.name.size() > 0";
@Override

public void addWriter (final Library library, final String name) {
final Writer writer = LibraryFactory.eINSTANCE.createWriter();
writer.setName (name) ;

library.getWriters () .add(writer) ;
final Resource res = library.eResource();
try {

ModelBusCorelib.getRepositoryHelper () .checkInModel (this.getSession(),
res, res.getURI());
} catch (Exception e) {
throw new RuntimeException (e);

199

MODELBUS
ModelBus User Guide

@Override
public List<Writer> getLooseWriters (Library library) {
evaluator.addModel (library.eClass () .getEPackage());

this.initializeOCLProcessor () ;

final String ocl = "context Library inv:
self.getLooseWriters()";

final List<Object> results =
this.evaluator.evaluateExpression (library, ocl);

return toWriterList(results);

}

@Override
public List<Writer> getWriters (final Library library) {
evaluator.addModel (library.eClass () .getEPackage());

this.initializeOCLProcessor () ;
final String ocl = "context Library inv: self.getWriters()";

final List<Object> results =
this.evaluator.evaluateExpression (library, ocl);

return toWriterList(results);

}

@Override
public boolean isLibraryModelValid(final Library library) {
evaluator.addModel (library.eClass () .getEPackage()) ;

boolean valid = true;

//check if library contains writers

final List<Object> resultsl =
this.evaluator.evaluateExpression(library, "context Library inv:
self.writers->notEmpty ()");

if ((Boolean) resultsl.get (0) == false) {
System.out.println("Model is invalid: no writers");
valid = false;

}

//check if library contains not more than 3 writers

final List<Object> results2 =
this.evaluator.evaluateExpression(library, "context Library inv:
self.writers->size () < 4");

if ((Boolean)results2.get (0) == false) {
System.out.println ("Model is invalid: more than 3
writers");
valid = false;

200

MODELBUS
ModelBus User Guide

//check if all writer names are not empty

final List<Object> results3 =
this.evaluator.evaluateExpression (library, "context Library inv:
self.writers->select (w:Writer | w.name.size() = 0)->isEmpty()");

if ((Boolean)results3.get (0) == false) {
System.out.println ("Model is invalid: empty writer name
detected") ;
valid = false;
}

return valid;

}

private void initializeOCLProcessor () {
for (final String oclExpression : OCL EXPRESSIONS) {
this.evaluator.createOCLOperation (oclExpression) ;
}
}

private Session getSession() {
Session session = new Session|();
session.setId(EcoreUtil.generateUUID()) ;
Property propertyUserName = new Property();
propertyUserName.setKey ("username") ;
propertyUserName.setValue ("Admin") ;
Property propertyPassword = new Property();
propertyPassword.setKey ("password") ;
propertyPassword.setValue ("ModelBus") ;

session.getProperties () .add (propertyUserName) ;
session.getProperties () .add (propertyPassword) ;

return session;

@SuppressWarnings ("unchecked")

private static List<Writer> toWriterList (List<Object> list) {
final List<Writer> writers = new ArrayList<Writer>();

final List<Object> subList = (List<Object>)list.get (0);

for (final Object obj : subList) {
writers.add((Writer)obj);

}

return writers;

OsloOCLEvaluator.java:

201

MODELBUS
ModelBus User Guide

package org.modelbus.library.example.service;
import java.util.List;

import org.eclipse.emf.ecore.EObject;

import org.eclipse.emf.ecore.EPackage;

import org.oslo.ocl20.0clProcessor;

import org.oslo.ocl20.bridgedemf.EmfOclProcessorImpl;
import org.oslo.ocl20.semantics.bridge.Environment;
import org.oslo.ocl20.synthesis.RuntimeEnvironment;

public class OsloOCLEvaluator ({
private OclProcessor processor;

public OsloOCLEvaluator () {
this.processor = new EmfOclProcessorImpl (new ExceptionLog());

}

@SuppressWarnings ("unchecked")
public List<Object> evaluateExpression(final EObject eobject, final
String expression) {

final Environment env = this.processor.environment ("self",
eobject.getClass());
final RuntimeEnvironment renv =

this.processor.runtimeEnvironment ("self", eobject);

System.out.println ("\tExpression: " + expression + " (on: " +
eobject + ")");

List<Object> results = null;
try {
results = this.processor.evaluate (expression, env, renv,
this.processor.getLog()) ;
} catch (Exception e) {
e.printStackTrace();

}

return results;

}

public EPackage addModel (final EPackage model) {
this.processor.addModel (model) ;

return model;

}

public void createOCLOperation (final String def) {
System.out.println ("\tCreating OCL expression: " + def);
this.processor.analyse (def) ;

ExceptionLog.java:

Ipackage org.modelbus.library.example.service;

202

ModelBus User Guide

M[]IJELBUS

import uk.ac.kent.cs.kmf.util.ILog;
public class ExceptionlLog implements ILog {

public ExceptionLog () {
// TODO Auto-generated constructor
}

@Override
public void close () {
// TODO Auto-generated method stub

}

@Override
public void finalReport () {
// TODO Auto-generated method stub

}

@Override

public int getErrors() {
// TODO Auto-generated method stub
return O;

}

@QOverride

public int getWarnings () {
// TODO Auto-generated method stub
return 0;

}

@Override

public boolean hasErrors () {
// TODO Auto-generated method stub
return false;

}

@Override

public boolean hasViolations () {
// TODO Auto-generated method stub
return false;

}

@Override

public boolean hasWarnings () {
// TODO Auto-generated method stub
return false;

}

@Override
public void printMessage (String arg0) {
//throw new RuntimeException (arg0) ;

}

@QOverride

stub

203

M[]IJELBUS

ModelBus User Guide

public void reportError (String arg0) {
throw new RuntimeException (arg0);

}

@Override
public void reportError (String arg0, Exception argl) {
throw new RuntimeException (argl);

}

@Override
public void reportMessage (String arg0) {
// TODO Auto-generated method stub

}

@Override
public void reportWarning(String arg0) {
// TODO Auto-generated method stub

}

@Override
public void reportWarning(String arg0, Exception argl)
// TODO Auto-generated method stub

}

@Override
public void reset () {
// TODO Auto-generated method stub

}

@Override
public void resetErrors () {
// TODO Auto-generated method stub

}

@Override
public void resetViolations () {
// TODO Auto-generated method stub

}

@Override
public void resetWarnings () {
// TODO Auto-generated method stub

}

@Override

public boolean tooManyViolations() {
// TODO Auto-generated method stub
return false;

{

204

ModelBus User Guide

MODELBUS

B

23.3.3 The Service Consumer Adapter

Activator.java:.

package org.modelbus.library.example.service;

import java.io.IOException;
import java.util.List;

import library.Library;

import library.LibraryFactory;
import library.LibraryPackage;
import library.Writer;

import org.eclipse.emf.common.util.URI;

import org.eclipse.emf.ecore.EPackage;

import org.eclipse.emf.ecore.resource.Resource;

import org.eclipse.emf.ecore.resource.ResourceSet;

import org.eclipse.emf.ecore.resource.impl.ResourceSetImpl;
import org.eclipse.emf.ecore.util.EcoreUtil;

import org.modelbus.ModelBusServiceConfiguration;

import

import org.modelbus.core.lib.dosgi.RepositoryHelper;
import org.modelbus.dosgi.repository.descriptor.Property;
import org.modelbus.dosgi.repository.descriptor.Session;

@QOverride
protected void serviceRegistered(Object service) {
Session session = new Session();

session.setId (EcoreUtil.generateUUID()) ;
Property propertyUserName = new Property();
propertyUserName.setKey ("username") ;
propertyUserName.setValue ("Admin") ;
Property propertyPassword = new Property();
propertyPassword.setKey ("password") ;
propertyPassword.setValue ("ModelBus") ;

final ResourceSet set = new ResourceSetImpl ();
final Resource resl =

))

final EPackage p = LibraryPackage.eINSTANCE;

org.modelbus.core.lib.dosgi.AbstractModelBusAdapterConsumerActivator;

public class Activator extends AbstractModelBusAdapterConsumerActivator

session.getProperties () .add (propertyUserName) ;
session.getProperties () .add (propertyPassword) ;
final LibraryService libraryService = (LibraryService)service;

set.createResource (URI.createURI ("http://library.modelbus.org/demo.library"

205

MODELBUS
ModelBus User Guide

Library library = LibraryFactory.eINSTANCE.createlLibrary();
library.setName ("Demo library");

resl.getContents () .add(library);

System.out.println ("Performing library service:
isLibraryModelvValid") ;

boolean modelValid =
libraryService.isLibraryModelValid(library) ;

System.out.println ("Model valid: " + modelValid);
final String[] writerNames = new String[] { "Peter York",
"Susan Oxford", "Brian Woodstock", "Catherine Jones", "" };

for (final String writerName : writerNames) {
System.out.println ("Performing library service: addWriter
" + writerName) ;
libraryService.addWriter (library, writerName) ;

//checkout modified library
final Resource res2 =
set.createResource (URI.createURI ("http://library.modelbus.org/demo.library"

));
try {

ModelBusCorelLib.getRepositoryHelper () .checkOutModel (session, res2);
} catch (Exception e) {
throw new RuntimeException (e);

}
library = (Library)res2.getContents () .get(0);

for (final Writer writer : library.getWriters()) {
System.out.println (writer);

}

System.out.println ("Performing library service:
getWriters");

final List<Writer> writers =
libraryService.getWriters (library) ;

System.out.println ("Writers:");
System.out.println ("========");

for (final Writer currentWriter : writers) {
System.out.println (currentWriter.getName ()) ;

}

System.out.println ("Performing library service:
isLibraryModelvalid") ;

modelValid = libraryService.isLibraryModelValid (library);

System.out.println ("Model valid: " + modelValid);

206

™ MODELBUS
ModelBus User Guide

@Override

protected void configure (ModelBusServiceConfiguration config) {
// TODO Auto-generated method stub

}

@SuppressWarnings ("unchecked")

@Override

protected Class getServicelInterface() {
return LibraryService.class;

}

@Override

public void registerRepositoryHelper (RepositoryHelper helper) {
// do nothing

}

207

