

ModelBus User Guide

Version: 0.84 corresponding to ModelBus Release 1.9.9

Date: 7th 22th July 2015

Web: www.modelbus.org

Email: info (at) modelbus (dot) org

http://www.modelbus.org/

 ModelBus User Guide

2

This document has been created by the ModelBus group at Fraunhofer FOKUS

(www.modelbus.org) supported by the “Kompetenzzentrum – Das virtuelle Fahrzeug,

Forschungsgesellschaft mbH [ViF]” (http://www.vif.tugraz.at/)

http://www.modelbus.org/
http://www.vif.tugraz.at/

ModelBus User Guide

3

PART I Introduction 7

1. What is the ModelBus? 9

2. ModelBus Architecture 11

PART II Installation of Repository and Client for Eclipse 13

3. How to install the ModelBus 15

3.1 Installation of a “local ModelBus” under Windows 15

3.1.1 Installation Instructions for Release 1.9.7 and later 16

3.1.2 Installation Instructions for Older Releases 21

3.2 Start and Shutdown of ModelBus Server 23

4. Installing ModelBus on a Linux (Ubuntu 12.04) Desktop 25

4.1 Installing the Server 25

4.2 Installing the Client 32

5. Setting up ModelBus for Encrypted Communication (HTTPS) 35

5.1 SSL Configuration in ModelBus Configuration Model 35

5.2 Creating ModelBus SSL Certificate 37

6. ModelBus Manager 40

6.1 What is ModelBus Manager? 40

6.2 How to Install ModelBus Manager? 40

6.3 Login to ModelBus Manager 41

6.4 Accessing the Repository 42

6.5 Export Repository Contents 44

6.6 Managing Users and Access Rights 45

7. ModelBus Proxy 47

7.1 Server-Side Setup 47

7.2 Client-Side Setup 47

8. Installing ModelBus Client for Eclipse 53

8.1 Configuration Options with Local ModelBus Server 53

8.2 Configurations Options for “Standalone” Client 53

8.3 Installing TeamProvider Feature for Eclipse 54

8.4 Test the ModelBus Server and Client installation 57

 ModelBus User Guide

4

PART III Eclipse Client 63

9. ModelBus Repository Access Control 65

10. Managing Access Rights with ModelBus Client for Eclipse 68

10.1 Finding the “model” namespace in the repository 68

10.2 Check out a name space to the local workspace as a shared project 69

10.3 Add a new user and commit changes to the Repository 70

10.4 Change the password for the current user 74

10.5 Example User Access Model 75

11. Checking ModelBus and Services Status 78

12. The Team Synchronizing Perspective 79

12.1 Add a project to the ModelBus repository 81

12.2 Producing and discovering conflicts 85

12.3 Inspecting the conflicts using a Compare editor 88

12.4 Some explanations on the Team Synchronizing perspective 89

13. Locking Elements in the Repository 92

13.1 Locking Files and complete Models 92

13.2 Locking Model Elements in the Repository 95

14. The ModelBus Repository Exploring Perspective 98

15. Notifications 100

16. Dependencies 101

17. Fragmentation 103

18. Interactive Mode 104

PART IV Orchestration 107

19. Orchestration 109

19.1 Modeling the basic workflow with BPMN 110

19.2 Basic BPMN diagram with interface descriptions 113

19.3 Mapping data and using variables in the workflow 117

19.4 The generated executable BPEL workflow 119

19.5 Deployment and execution of the workflow 120

19.6 Including user interaction in a workflow 121

ModelBus User Guide

5

PART V Developer API 127

20. ModelBus Architecture 129

20.1 Concept 129

20.2 Repository 130

20.3 Interaction Pattern 132

20.4 Provider Adapter 133

20.5 Consumer Adapter 134

20.6 ModelBus Core Lib API 135

21. Code Examples 136

21.1 Repository Browser 136

21.2 Microsoft .NET based Repository Browsing 139

21.3 Model Fragmentation 141

21.4 Dependencies Support 142

21.5 Notification Listener 144

21.6 How to write an Adapter 146

21.6.1 1st Project – Interface 147

21.6.2 Second Project – Provider 151

21.6.3 Third Project – Consumer 162

21.6.4 Relations between the parts of the adapter realizations 166

22. ModelBus Exception Specifications 170

23. Trouble Shooting Guide 172

Appendix B A more complex Consumer / Provider Adapter Implementation Example 175

24. A more complex Consumer / Provider Adapter 177

24.1 How to get the example 177

24.2 The Library Service 179

24.2.1 The Library Meta Model 179

24.2.2 The Service Interface 180

24.2.3 The Service Provider Adapter 182

24.2.4 The Service Consumer Adapter 187

24.2.5 Direct Invocation of the Service using the WSDL 196

 ModelBus User Guide

6

24.3 The Source Code of the Java Adapter Implementation Classes used 197

24.3.1 The Library Service Interface 197

24.3.2 The Service Provider Adapter 198

24.3.3 The Service Consumer Adapter 205

PART I

Introduction

ModelBus User Guide

9

1. What is the ModelBus?

ModelBus is a model-driven tool integration framework which allows you to build a

seamlessly integrated tool environment for your system engineering process.

ModelBus addresses some of the common problems in today’s software development

process:

 Inconsistencies between development artifacts

To cover the whole software development process you mostly need to apply different

independent tools. Modeling artifacts within one tool do not know about modeling

artifacts in another tool. There exist relationships between those artifacts, but they

are not explicitly covered and handled by the separate tools.

 Low degree of automation

Due to the separation of the tools it is quite often complicated to automate the

development process. Combination of tools is mostly a manual process using the

export and import mechanism of the tools and perhaps manually adapting the

intermediate results. Those manual workflows are time consuming and error-prone.

 Insufficient common terminology

Different tools quite often use different terminologies which need to be adapted or a

common terminology to be used

 Complexity

Complexity of the systems as well as the processes is a real challenge. Automating

 ModelBus User Guide

10

processes, concentrating on specific aspects through views could help to handle this

complexity.

 Cost

Automating processes, reuse of sub steps could help to decrease costs

 Decoupled software tools

Decoupled tools need means to handle relationships of modeling artifacts crossing

tools boundaries

 Produced data remain proprietary and depend on specific tools

Quite often data created within one tool have a tool specific format. Transformations

and adaptations are needed to cross tool boundaries

ModelBus addresses integration challenges like:

 Data Integration: How can tools share data (models)?
 Control Integration ("service sharing"): How can a tool use a service provided by

another tool?
 Process Integration: How can software engineering processes that involve several

tools, roles and work products be supported?

How does ModelBus help?

 ModelBus offers open interfaces and is based on SOA principles.

 Commercial of the shelf tools (COTS) can be plugged to the ModelBus to make their

functionality available.

 ModelBus helps you automating your development process.

 ModelBus supports transparent model sharing.

 ModelBus allows homogenous views on heterogeneous data and model sources.

 ModelBus is built on existing standards (SOAP, MOF, EMF, BPMN, BPEL, JMI, OCL).

The ModelBus Core components are provided as Open Source.

ModelBus User Guide

11

2. ModelBus Architecture

Figure 1 and Figure 2 within this section show different aspects of the ModelBus and its use.

The first shows the ModelBus as integration and communication platform connecting

different services offered by tools connected to the ModelBus. Based on SOA principles it

also offers a service registry and notification service as core services. Workflows that can be

executed automatically can be defined and executed using orchestration tools. Models can

be stored within Repositories (Model Storage) and made available for all tools attach to the

ModelBus. Generic model verification services can be used to verify intermediate modeling

results with respect to some modeling guidelines. Model transformations can be used to

transform the results created with one tool to be usable in the context of another tool.

Keeping track of the relationships between the artifacts within the model can be supported

by a traceability service.

Figure 1 The ModelBus General Structure

Figure 2 shows another view on the ModelBus.

 ModelBus User Guide

12

Figure 2 The ModelBus General Architecture

PART II

Installation of

Repository and Client for Eclipse

ModelBus User Guide

15

3. How to install the ModelBus

Figure 3 shows a typical deployment of a simple ModelBus installation. The ModelBus

installation is usually done on a dedicated server or even on your local machine. In this

simple installation the ModelBus consists of a WebServer with the ModelBus repository,

which is based on Subversion. You can install this locally at your site or you can use an

installation remotely, run by another site. In more sophisticated installations the ModelBus

server most likely also includes other modeling services (e.g. transformation).

On the left side we see the tools that makes use of services (e.g. repository) through the

ModelBus using WebServices communication mechanisms. Those have to be installed

separately. The concrete installation process may differ from tool to tool.

Figure 3 General Deployment Architecture

We will illustrate the installation of a local ModelBus and the installation of a “client” based

on Eclipse and offering Team support on the ModelBus repository to the user.

3.1 Installation of a “local ModelBus” under Windows

 Please note: The ModelBus installation procedure has changed significantly with the
release of version 1.9.7. For installation instructions for older versions please refer to
the user guides of the corresponding version.

 ModelBus User Guide

16

You will find all the packages you need through the ModelBus Web site:

http://www.modelbus.org/en/modelbusdownloads.html .

Always use the links from the ModelBus Website to get the actual current release version.

The ModelBus Server and Repository is pre-bundled, but not complete with SVN-support.

Due to license restrictions you need to download this by your own. First download “Server”

from the Website. With release 1.9.5 there will be different versions of the ModelBus Server

on the Web site. This document focuses on the Windows installation of ModelBus. It

depends on your personal taste which Eclipse based version to use. In our example

installation the Juno based Win32 version will be used. All other versions are installed quite

similar. Be aware that for a 64 bit installation you also need a 64 bit Java JDK.

Unpack it to a location as you find appropriate, e.g. C:\ModelBus\server.

The ModelBus installation procedure has changed significantly with the release of version

1.9.7. However, for reasons of backward compatibility, the settings for older releases will

work with release version 1.9.7 as well. In the following, both the installation process for the

1.9.7 release and for older releases will be explained in detail.

3.1.1 Installation Instructions for Release 1.9.7 and later

For the ModelBus server setup, there is at least one single environment variable

MODELBUS_ROOT needed. This variable has to point to the location the contents of the

downloaded archive have been extracted to (see).

Figure 4 ModelBus Root System variable

http://www.modelbus.org/en/modelbusdownloads.html

ModelBus User Guide

17

The server is configured to look for a configuration model named “modelbus.config” in the

serverConfiguration folder within the installation folder. This model contains the basic

configuration needed to run the ModelBus server. As default, the model for releases prior to

1.9.9 is defined as follows:

<?xml version="1.0" encoding="UTF-8"?>

<config:ConfigModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:config="http://www.modelbus.org/system/model/config.ecore">

 <locations name="repositoryLocation"

location="http://0.0.0.0:8080/modelbusrepository"/>

 <!-- <locations name="secureRepositoryLocation"

location="https://0.0.0.0:8181/modelbusrepository">

 (...)

 </locations> //-->

 <locations name="notificationLocation" location="tcp://localhost:61616"/>

 <locations name="svnRepositoryLocation" location="\repository"/>

</config:ConfigModel>

The configuration model for releases 1.9.9 or later is defined as follows:

<?xml version="1.0" encoding="UTF-8"?>

<config:ConfigModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:config="http://www.modelbus.org/system/model/config.ecore">

 <location name="repositoryLocation"

location="http://0.0.0.0:8080/modelbusrepository"/>

 <!-- <locations name="secureRepositoryLocation"

location="https://0.0.0.0:8181/modelbusrepository">

 (...)

 </location> //-->

 <location name="notificationLocation" location="tcp://localhost:61616"/>

 <location name="svnRepositoryLocation" location="\repository"/>

</config:ConfigModel>

The content of the configuration model is initially made up of three different locations:

repositoryLocation, notificationLocation and svnRepositoryLocation. The repositoryLocation

contains the URL where the repository server will be running at (e.g.

http://0.0.0.0:8080/modelbusrepository) (see). “0.0.0.0:8080” must be replaced by the real

host and port the server should run on.

http://0.0.0.0:8080/modelbusrepository

 ModelBus User Guide

18

 By specifying 0.0.0.0 as host, the ModelBus server will be bound to both, the internal
interface (localhost) and the corresponding external interface. If you do not want the
server to be available externally, you should replace 0.0.0.0 by localhost.

 Please make sure that you do not add a query string (e.g. “?wsdl”) to the repository

location.

The second location in the configuration model, notificationLocation, defines the URL for the

ModelBus notification service (e.g. tcp://localhost:61616) which is needed to run the

ModelBus server. In most situations, it might be not necessary to change the value of this

location.

 Please mind the “tcp://” in the notification address.

The value of the configuration option svnRepositoryLocation defines the location where the

ModelBus repository content should be stored. This can be either a path in the servers local

file system (e.g. \repository) or an URL pointing to an external Subversion repository.

Local SVN Repository

In case of local repository storage, ModelBus expects a path in the server’s file system as

value for the configuration option svnRepositoryLocation. You can specify either a path

relative to the ModelBus installation folder (e.g. \repository) or an absolute path (e.g.

C:\ModelBus\repository).

 Please note: ModelBus installation directory and ModelBus Repository directory have
to be different. ModelBus Repository directory shall be empty before starting the
ModelBus server the first time.

(Optional) Create the directory defined as the svnRepositoryLocation location, e.g.

\repository. This folder needs to be empty. The ModelBus server will create the initial data

ModelBus User Guide

19

structure within that directory. When you do not create the folder, the ModelBus server will

create it automatically on startup.

External SVN Repository

The ModelBus server can also be bound to an external Subversion repository by specifying an

URL pointing to the repository location. ModelBus is able to connect to repositories

accessible via the Subversion protocol (e.g. svn://localhost/modelbus) or via the WebDAV

protocol (e.g. https://localhost/modelbus). In case of using an external repository, the

svnRepositoryLocation configuration option needs to be extended with the credentials the

ModelBus server should use to connect to the repository. This should be done by using two

additional location properties providing the Subversion user and password:

<?xml version="1.0" encoding="UTF-8"?>

<config:ConfigModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:config="http://www.modelbus.org/system/model/config.ecore">

 (...)

 <locations name="svnRepositoryLocation"

location="svn://localhost/modelbus/">

 <properties name="SVNUserName" value="ModelBus"/>

 <properties name="SVNPassword" value="yourpassword"/>

 </locations>

</config:ConfigModel>

Or for ModelBus releases 1.9.9 or higher:

<?xml version="1.0" encoding="UTF-8"?>

<config:ConfigModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:config="http://www.modelbus.org/system/model/config.ecore">

 (...)

 <location name="svnRepositoryLocation"

location="svn://localhost/modelbus/">

 <property name="SVNUserName" value="ModelBus"/>

 <property name="SVNPassword" value="yourpassword"/>

 </location>

</config:ConfigModel>

 Please note: The Subversion user specified in the configuration model is required for
connecting the ModelBus server to the external Subversion repository. For user-
related transactions on the repository via ModelBus, a user with the same credentials

 ModelBus User Guide

20

as used for the ModelBus session needs to be added to the Subversion repository.

Sample Configuration for Local Storage

The following is a summary of sample values for the ModelBus locations mentioned above:

System variable Value

repositoryLocation http://0.0.0.0:8080/modelbusrepository

notificationLocation tcp://localhost:61616

svnRepositoryLocation \repository

 Since ModelBus version 1.9.7, the ModelBus server can be run using https protocol.
Please see section 4 Setting up ModelBus for Encrypted Communication (HTTPS) for
more detailed information for the setup.

Now, if the server should operate on a SVN repository, we need to add the additional

software for the SVN support and thus add the SVNKit binaries compatible to Subversion 1.7

or higher to the ModelBus server installation. Therefore, please download the SVNKit Eclipse

Update Site Archive version 1.7.5-v1 or higher using the link on the ModelBus Website:

http://www.svnkit.com/org.tmatesoft.svn_1.7.5-v1.eclipse.zip. Unpack it to your most

favorite temporary location and move the bundles contained in the extracted plugins folder

to the \bin\plugins folder of your ModelBus server installation.

To be able to run the ModelBus Server you need to have a Java 6 SDK installed, which you
can download at http://java.sun.com/javase/downloads/index.jsp, e.g. jdk-6uxx-windows-
i586.exe for the 32 bit server or jdk-6uxx-windows-x64.exe for the 64 bit server.

Local Git Repository

As of server release 1.9.8, the ModelBus server is also able to store data in a local Git

repository. The configuration option gitRepositoryLocation has to be used to specify the

location of the Git repository. You can either specify a path relative to the ModelBus

installation folder (e.g. \gitrepository) or an absolute path (e.g. C:\ModelBus\repository). In

addition, the credentials the server should use to access the repository, i.e. a username and

an email address, have to be specified as a set of properties of the location:

ModelBus User Guide

21

<?xml version="1.0" encoding="UTF-8"?>

<config:ConfigModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:config="http://www.modelbus.org/system/model/config.ecore">

 (...)

 <locations name="gitRepositoryLocation" location="\gitrepository">

 <properties name="GitUserName" value="ModelBus"/>

 <properties name="GitUserEmail" value="server@somehost.com"/>

 </locations>

</config:ConfigModel>

For ModelBus releases 1.9.9 or higher, the configuration model should look like:

<?xml version="1.0" encoding="UTF-8"?>

<config:ConfigModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:config="http://www.modelbus.org/system/model/config.ecore">

 (...)

 <location name="gitRepositoryLocation" location="\gitrepository">

 <property name="GitUserName" value="ModelBus"/>

 <property name="GitUserEmail" value="server@somehost.com"/>

 </location>

</config:ConfigModel>

 Please note: It is only possible to use a single repository at runtime. If more than one
repository location is set (i.e. one location for SVN and another one for Git), the
ModelBus server will use the first one specified in the configuration model and ignore
the other.

3.1.2 Installation Instructions for Older Releases

Create a directory where you want the ModelBus repository content to be stored, e.g.

C:\ModelBus\ModelBusRepository. This folder needs to be empty. The ModelBus server will

create the initial data structure within that directory. You must create a new system variable

MODELBUS_SVN_REPOSITORY_LOCATION pointing to that location (see Figure 5).

 Please note: ModelBus installation directory and ModelBus Repository directory have
to be different. ModelBus Repository directory shall be empty before starting the
ModelBus server the first time.

 ModelBus User Guide

22

Figure 5 ModelBus SVN Repository Location System Variable

An additional environment variable MODELBUS_REPOSITORY_LOCATION is needed that

contains the URL where the repository server will be running (e.g.

http://localhost:8080/modelbusrepository) (see Figure 6). “localhost:8080” must be replaced

by the real host and port it is running on.

 Please make sure that you do not add a query string (e.g. “?wsdl”) to the repository
location.

Figure 6 MODELBUS_REPOSITORY_LOCATION Variable

The variable MODELBUS_NOTIFICATION_LOCATION with the URL for the notification service

(e.g. tcp://localhost:61616) (see Figure 7) is needed to use the notification service.

 Please mind the “tcp://” in the notification address.

ModelBus User Guide

23

Figure 7 MODELBUS_NOTIFICATION_LOCATION Variable

The following is a summary of sample values for the system variable mentioned above:

System variable Value

MODELBUS_SVN_REPOSITORY_LOCATION C:\ModelBus\repository

MODELBUS_REPOSITORY_LOCATION http://localhost:8080/modelbusrepository

MODELBUS_NOTIFICATION_LOCATION tcp://localhost:61616

Now we need to add the additional software for the SVN support. Download the SVNkit

using the link on the ModelBus Website “1.3.4” which links to the version needed:

http://www.svnkit.com/org.tmatesoft.svn_1.3.4.standalone.zip (at least

http://www.svnkit.com/org.tmatesoft.svn_1.3.2.standalone.zip). Unpack it to your most

favorite temporary location.

Move the following files to “…\ModelBusServer\lib” (the lib directory of your pre-bundled

Server):

 svnkit-javahl.jar

 svnkit.jar

 trilead.jar

 jna.jar

The rest of the SVNKit is not needed any longer so that you can throw it away.

To be able to run the ModelBus Server you need to have a Java 6 SDK installed, which you
can download at http://java.sun.com/javase/downloads/index.jsp, e.g. jdk-6uxx-windows-
i586.exe for the 32 bit server or jdk-6uxx-windows-x64.exe for the 64 bit server.

3.2 Start and Shutdown of ModelBus Server

Now you can make the ModelBus and its repository available by starting the ModelBus

Server. You should use startModelBusServer.exe executable in the server installation folder

(see Figure 5 and Figure 6).

 ModelBus User Guide

24

 Please do not use “_service.exe” in the bin folder to start the ModelBus Server. In
this case the server would not start properly. In addition, there would be no
console available indicating problems on startup.

Figure 5 Use startModelBusServer.exe to start the Server

Figure 6 Server Console Window

In order to shutdown ModelBus server release version 1.9.6. or lower, just close the server’s
console window. As of ModelBus server release 1.9.7, it is recommended to type “exit” in the
server’s console window and to confirm the shutdown question.

If you plan to handle large models it could be necessary to increase the Java heap space size
for the server. Therefore you have to edit the startup.bat file in the bin folder and insert an
additional parameter. The example shown sets the heap space to 1024MB which also is the
default value (Figure 7). With the 64 bit ModelBus server version you can only increase the
heap space to ~1.5 GB.

ModelBus User Guide

25

Figure 7 Increase Java Heap Space on the Server

You can quickly check whether the server is running using a web browser and invoking URL

that you stated in the repositoryLocation configuration option augmented with the query

string “?wsdl” e.g. http://localhost:8080/modelbusrepository?wsdl. The result should be a

listing of the RepositoryService wsdl.

3.3 Installing ModelBus on a Linux (Ubuntu 12.04) Desktop

We are going to install ModelBus in the home directory. Therefore create a folder Modelbus

there and two folders in it as shown in Figure 8.

Figure 8 ModelBus installation location

Within this example we will install a server and a client based on the Eclipse Juno release.

You can also use a Juno based client with an Indigo based server and vice versa. A 32 bit

client can also be used with a 64 bit server and vice versa, or a windows client with a Linux

based server etc. The only thing you have to keep in mind is that an appropriate java (32/64

bit) has to be installed.

3.3.1 Installing the Server

In the example we use a 32 bit Juno based server on the 32 bit Ubuntu 12.04 Desktop

system.

 ModelBus User Guide

26

First we have to install a Java JDK. We use the openjdk delivered with Ubuntu but we have to

install it, e.g. using the Synaptic Package Manager (see Figure 9).

Figure 9 Install OpenJDK

Retrieve the Linux 32 bit (Juno) version from the current release page at

http://www.modelbus.org/en/modelbusdownloads.html. Save the file in the Downloads

folder.

Similarly retrieve the SVN kit to be used later from

http://www.svnkit.com/org.tmatesoft.svn_1.7.11.eclipse.zip.

Unpack the Juno based ModelBus Server downloaded to the MBServer directory (see Figure

8) using the Archive manager (see Figure 10).

Similarly extract the SVN jars needed from the org.tmatesoft.svn_1.7.11.eclipse.zip archive

(see Figure 11) to the plugins directory of the Modelbus Server installation.

http://www.modelbus.org/en/modelbusdownloads.html

ModelBus User Guide

27

Figure 10 Start Archive Manager

Figure 11 Extract the SVN kit jars

Next we have to define the environment variable needed. We do this in the “.profile” for the

current user. This will be executed every time the user logs in. The .profile file will only be

visible after toggling the “Show Hidden Files” (see Figure 12).

 ModelBus User Guide

28

Figure 12 Making .profile visible

Open .profile in the editor and add the following lines at its end:

export MODELBUS_ROOT=<Path to Modelbus Server Folder>

The MODELBUS_ROOT variable should point to the directory where the Modelbus Server has

been installed to.

The result is shown in Figure 13.

Figure 13 .profile of the current user

ModelBus User Guide

29

If you want to configure the server location, the notification service location and the location

of the repository, you have to adjust the modelbus.config file in the serverConfiguration

folder (see Figure 14). However, for our example installation we don’t change anything.

Figure 14 modelbus.config

Please note that the configuration meta model has changed slightly with the release 1.9.9.

See chapter 3.1.1 for details.

Finally, we have to make the “startup.sh” and the “modelbus” file in the Modelbus Server

executable (see Figure 15 and Figure 16).

 ModelBus User Guide

30

Figure 15 Set startup.sh executable

Figure 16 Set modelbus executable

Now we can start the ModelBus server by double click on startup.sh and selecting “Run in

Terminal” (Figure 17).

Figure 17 Run startup.sh

This will result in a terminal as shown in Figure 18.

ModelBus User Guide

31

Figure 18 ModelBus server started

Accessibility of the Modelbus server can be checked using a browser and invoking the

location specified in the repositoryLocation property in the modelbus.config file (see Figure

14) concatenated with the string ”?wsdl”. This will result in displaying the ModelBus

Repository WSDL as shown in Figure 19.

 ModelBus User Guide

32

Figure 19 Invoking the ModelBus Repository WSDL

3.3.2 Installing the Client

Within this section we will describe how to install the ModelBus Team Provider client based

on the Juno modeling release.

First we need the eclipse Juno modeling version for 32 bit Linux as a base to install the

ModelBus client. You can download it from:

http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release

/juno/SR2/eclipse-modeling-juno-SR2-linux-gtk.tar.gz

Unpack it using the Archive Manager to the MBClient directory (similar to the action shown

in Figure 10 and Figure 11).

Open the folder eclipse and start the eclipse file contained in there (Figure 20).

ModelBus User Guide

33

Figure 20 Eclipse client

From now on the installation is identical to the Windows based client installation described

in this guide and you can follow the description there. To start the client afterwards you only

need to start Eclipse you installed it in.

Finally, you will be able to use the Eclipse ModelBus Client (Figure 21) in the same way as the

client in the Windows environment and you can follow the descriptions there.

Figure 21 The ModelBus Client

 ModelBus User Guide

34

ModelBus User Guide

35

4. Setting up ModelBus for Encrypted Communication (HTTPS)

As of release 1.9.7, ModelBus supports encrypted communication using HTTPS. An HTTPS

connector can be setup in parallel to the HTTP connector or standalone.

If you are not familiar with SSL, see http://docs.oracle.com/javase/1.5.0/docs/tooldocs/

windows/keytool.html for some detailed information about the terms and concepts in

context of SSL and its implementation in Java.

4.1 SSL Configuration in ModelBus Configuration Model

The configuration options needed to setup a HTTPS connection to the ModelBus server has

to be provided through the ModelBus configuration model modelbus.config introduced in

chapter 3.1.1 by using the secureRepositoryLocation location. The following excerpt of the

configuration model shows the relevant fragment to configure the HTTPS connection:

<?xml version="1.0" encoding="UTF-8"?>

<config:ConfigModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:config="http://www.modelbus.org/system/model/config.ecore">

 (...)

<locations name="secureRepositoryLocation"

location="https://0.0.0.0:8181/modelbusrepository">

 <properties name="SSLTrustStore" value="SSL\cacerts.jks"/>

 <properties name="SSLTrustStorePassword" value="yourpassword"/>

 <properties name="SSLKeyStore" value="SSL\modelbus.keystore"/>

 <properties name="SSLKeyStorePassword" value="yourpassword"/>

 <properties name="SSLAlgorithm" value="RSA"/>

 <properties name="SSLPassword" value="yourpassword"/>

 </locations>

 (...)

</config:ConfigModel>

For ModelBus releases 1.9.9 or higher, the configuration model looks slightly different:

<?xml version="1.0" encoding="UTF-8"?>

<config:ConfigModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:config="http://www.modelbus.org/system/model/config.ecore">

 (...)

<location name="secureRepositoryLocation"

location="https://0.0.0.0:8181/modelbusrepository">

 <property name="SSLTrustStore" value="SSL\cacerts.jks"/>

 <property name="SSLTrustStorePassword" value="yourpassword"/>

 <property name="SSLKeyStore" value="SSL\modelbus.keystore"/>

 <property name="SSLKeyStorePassword" value="yourpassword"/>

 <property name="SSLAlgorithm" value="RSA"/>

 <property name="SSLPassword" value="yourpassword"/>

http://docs.oracle.com/javase/1.5.0/docs/tooldocs/%20windows/keytool.html
http://docs.oracle.com/javase/1.5.0/docs/tooldocs/%20windows/keytool.html

 ModelBus User Guide

36

 </location>

 (...)

</config:ConfigModel>

Beside the HTTPS location itself (https://0.0.0.0:8181/modelbusrepository) some additional

properties have to be passed to the ModelBus server in order to configure a SSL connection

for ModelBus:

1. SSLTrustStore: The absolute or relative path (relative to the configuration folder) to

the trust store which stores trusted certificates for certificate authorities (CAs) known

to the server. If this option is not set, the default trust store shipped with the JDK will

be used instead of an own one. See the Java Docs for more detailed information

http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html#cacerts.

2. SSLTrustStorePassword: The password required to access the trust store referenced in

the SSLTrustStore property. If an own trust store is configured the password for the

JDK built-in trust store has to be used (default: changeme).

3. SSLKeyStore: The absolute or relative path (relative to the configuration folder) to the

key store containing the SSL certificate to use for the communication with the

ModelBus server.

4. SSLKeyStorePassword: The password required to access the key store referenced in

the SSLKeyStore property.

5. SSLAlgorithm: The name of the algorithm used to generate the key pairs and to sign

certificates (e.g. RSA). An overview of supported algorithms can be found at

http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html#DefaultAl

gs

6. SSLPassword: The password required to recover the private key generated for the

certificate.

In the example configuration both the key store and the trust store reside in a folder named

SSL which is a subfolder of the ModelBus configuration folder. Both files are not initially

included in the ModelBus configuration and have to be created as explained in chapter 4.2.

The usage of the SSLTrustStore property is optional. If an own trust store is used, the

ModelBus server will rely on the CAs listed in the JDK built-in trust store. In this case, you

either have to import the certificate of your “own” CA to the JDK trust store - if you want to

use a self-signed certificate - or you have to use a certificate verified by a real CA whose

certificate is available in the trust store.

In order to check whether the server is running correctly using HTTPS, you can open up a web

browser and target it to the URL you have defined in the secureRepositoryLocation

http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html#cacerts
http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html#DefaultAlgs
http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html#DefaultAlgs

ModelBus User Guide

37

configuration option. Please do not forget to add the query string “?wsdl” (e.g.

https://localhost:8181/modelbusrepository?wsdl). The result should be a listing of the

RepositoryService wsdl as indicated in chapter 3.2.

4.2 Creating ModelBus SSL Certificate

You can either use a real SSL certificate to run the ModelBus server in productive

environment or you can create a self-signed one for test purposes. This section describes

how to create a custom SSL certificate and how to ‘sign’ it using a custom CA.

Java is delivered with a key and certificate management utility called keytool which allows

users to create and manage their own keys and the certificates associated to them. keytool

stores the keys and certificates in a file called “key store” which can be understood as a

repository of certificates holding the public and private keys required for communication. In

the default implementation the key store is implemented as a file where the private keys are

protected by a password. The keytool utility can be used to import, export and list the

contents of a key store and to generate self-signed certificates for test purposes. For detailed

information about the keytool utility see

http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html.

In order to create a certificate for the ModelBus server, the following steps have to be

performed:

1. Create two folders, e.g. C:\keytools and C:\keytools\keys and change to folder

C:\keytools.

2. Create the key store containing the ModelBus certificate and its key pair.

With the keytool utility, this can be done in one step using the genkey option:

keytool -genkey -alias ModelBusServer -keyalg RSA -validity 365 -keystore

keys/modelbus.keystore

This will prompt for some information about the certificate’s owner needed to create

the certificate. The following fragment shows some example data for the creation of a

certificate for the R&D department of an exemplary company named

ExampleCompany.

Enter keystore password: yourpassword

What is your first and last name?

 [Unknown]: www.examplecompany.com

What is the name of your organizational unit?

 [Unknown]: R&D

http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html

 ModelBus User Guide

38

What is the name of your organization?

 [Unknown]: Example Company

What is the name of your City or Locality?

 [Unknown]: Berlin

What is the name of your State or Province?

 [Unknown]: Berlin

What is the two-letter country code for this unit?

 [Unknown]: DE

Is CN=www.examplecompany.com, OU=R&D, O=Example Company, L=Berlin,

ST=Germany, C=DE correct?

 [no]: y

Enter key password for <ModelBusServer>

 (RETURN if same as keystore password):

 Please note: If you do not use a real domain name (value for first and last name of
the certificate owner) for the certificate, please use the IP you have specified as host
for the secureRepositoryLocation instead.

As a result, a key store file containing the ModelBus private and public keys and its

wrapping certificate is created at C:\keytools\keys\modelbus.keystore.

3. Export the ModelBus certificate from the key store.

This can be done using the export option of keytool. The following command exports

the ModelBus certificate to a file named ModelBusServer.cer in the C:\keytools folder:

keytool -export -alias ModelBusServer -storepass yourpassword -file

ModelBusServer.cer -keystore keys/modelbus.keystore

4. Signing the certificate.

If the certificate should be signed by a well-known CA, you first have to initialize a

Certificate Signing Request (CSR) and sent the generated artifact to the CA prior to

importing the certificate into a trust store. See

http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html#certreqC

md for detailed information about this procedure.

5. Import the certificate into a trust store.

http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html#certreqCmd
http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html#certreqCmd

ModelBus User Guide

39

The keytool utility can be used with the import parameter to create an own trust

store and add the ModelBus server certificate to it. Therefore, the following

additional parameters should be used:

keytool -import -v -trustcacerts -alias ModelBusServer -file

ModelBusServer.cer -keystore cacerts.jks -keypass yourpassword -storepass

yourpassword

After having confirmed that you trust the certificate you are about to import, a file named

cacerts.jks is created and the ModelBus certificate is imported as a trusted CA.

Both, the key store containing the certificate for the ModelBus server (modelbus.keystore)

and the trust store providing the certificate of the custom CA (cacerts.jks), have to be

provided to the ModelBus using the configuration model as described in section 4.1. In

addition, the passwords defined in this procedure have to be added to the ModelBus

configuration model.

 ModelBus User Guide

40

5. ModelBus Manager

5.1 What is ModelBus Manager?

ModelBus Manager is a web application for the administration of a ModelBus server

installation. In its current extent, it allows to browse the ModelBus repository and to manage

the user access rights to ModelBus.

5.2 How to Install ModelBus Manager?

ModelBus Manager is shipped together with some of the ModelBus Server distributions

based on Eclipse 4.2 (Juno) or higher, available on the ModelBus website. If you have

downloaded a distribution containing the ModelBus Manager, please install it as described in

section 3.

The ModelBus Manager application starts up together with the ModelBus server on the

default port 8080. If you want to change the port, please replace the port in the startup

batch file (for Windows distributions: bin_startup.exe) with a port number of your choice.

 Please note: In case of having changed the port of the ModelBus Manager, you are
required to start the ModelBus server by using the corresponding batch file for the
change to take effect.

After having started the server, the ModelBus Manager application is available as a web

application at http://%host%:%port%/modelbus?startup=manager (e.g.

http://127.0.0.1:8080/modelbus?startup=manager for a local installation using the default

port 8080). If access the corresponding URL with your browser, the ModelBus Manager

application starts up (see Figure 1).

ModelBus User Guide

41

Figure 22 ModelBus Manager Application without any Open Session

5.3 Login to ModelBus Manager

In order to use the ModelBus Manager application, you have to authenticate with valid

ModelBus user credentials. Therefore, you can use the Login button in the application’s

toolbar or the Login view. The latter has to be added to the perspective first using the Menu

command Application > Show View > Login View.

After having successfully logged in by using valid user credentials (see section 8 for more

details), the ModelBus Manager displays the current repository content (Repository view)

and the status of the ModelBus server (“Status” view) as shown in Figure 23.

 ModelBus User Guide

42

 Figure 23 ModelBus Manager Application with Open Session

5.4 Accessing the Repository

In general, ModelBus Manager allows to browse the ModelBus repository content with read-

only access except the deletion of its artifacts. The Repository view displays the content

structure of the repository and allows to open the artifacts in a (read-only) text editor (see

Figure 24). With the revision link list at its bottom, the editor provides access to the different

revisions of an artifact.

ModelBus User Guide

43

 Figure 24 Browsing the Repository with ModelBus Manager

In addition, the Repository view offers a context menu with a set of actions like deleting

artifacts or comparing revisions of artifacts using the ModelBus Model DiffMerge tool (see

Figure 25).

 ModelBus User Guide

44

Figure 25 Repository Context Menu in ModelBus Manager

5.5 Export Repository Contents

ModelBus Manager offers the functionality to export the repository content or a subset of its

artifacts of a particular revision as an archive file. Therefore, the artifacts to be included in

the exported archive have to be selected in the Repository view first. The context menu of

the Repository view provides the corresponding action “Export…” (see Figure 25) which

displays a dialog to select the revision to use for the export procedure.

ModelBus User Guide

45

Figure 26 Export Revision Selection Dialog in ModelBus Manager

After having selected the revision to be used for the export, another dialog opens up

providing a download link to the assembled archive file.

5.6 Managing Users and Access Rights

ModelBus Manager provides an editor for managing the user groups, the users and its access

rights to ModelBus. In order to use the user related functionalities of ModelBus Manager,

you have to switch to the Users application perspective first by using the perspective bar

located in the top-left corner of the application window. This bar provides a button labeled

with “other…” to select a particular perspective to switch to or – in case of already having

opened the Users perspective before – a button with direct access to the perspective.

 ModelBus User Guide

46

Figure 27 Export Users Perspective in ModelBus Manager

The Users perspective provides a view called “Users” showing the users and user groups

defined in the current ModelBus installation. A double-click on an item in this view opens an

editor that allows to edit the credentials of a user, its access rights and memberships to user

groups. The changes made to a user or a user group have to be applied by clicking the Save

button in the application bar.

 Please note: Don’t forget to apply changes of ModelBus users credentials also to the
user configuration of your Subversion repository.

ModelBus User Guide

47

6. ModelBus Proxy

As of release 1.9.9 ModelBus server is shipped with a proxy component that allows browsing

the repository. Therefore, the URL of an artifact can be used to navigate to the artifact in a

browser. An artifact can be represented in terms of different contexts, e.g. as a set of OSLC

resources.

6.1 Server-Side Setup

In order to setup this feature, you have to configure a ModelBus user for the proxy access

first and assign the appropriate rights to it (see section 5.6). Afterwards, you have to setup

this user to be used for the ModelBus proxy by adding two additional VM arguments to the

startup.bat (for Windows, corresponding file in other operating systems) file in the bin folder

of the ModelBus server installation folder. The required arguments are

org.modelbus.proxy.user and org.modelbus.proxy.password, respectively. The default Admin

user can be configured as followed:

-Dorg.modelbus.proxy.user=Admin -Dorg.modelbus.proxy.password=ModelBus

After having done these steps, you have to restart the ModelBus server using the modified

startup.bat file so that the changes can take effect.

6.2 Client-Side Setup

On the client side, you have to setup the proxy either on operation system level or on tool

level. We recommend doing the latter.

In the following we will demonstrate how to setup the proxy for the Firefox browser:

1. Please open the Firefox options dialog and switch to “Advanced” and “Network”. The

Network tab includes an option “Connection” which allows you to configure the way

the browser connects to the internet.

2. Press the “Settings…” button to open a dialog for changing the proxy configuration of

Firefox.

3. Please select the option Manual proxy configuration and specify the IP or network

name and the port the ModelBus server is running at for the option HTTP Proxy (e.g.

localhost and Port 8080 in case of local setup). Please leave the addresses for the

other proxy connections (SSL, FTP, SOCKS Host) empty! The text field labeled with No

 ModelBus User Guide

48

Proxy for should contain the value localhost, 127.0.0.1. Figure 28 shows an exemplary

configuration.

Figure 28 Firefox Proxy Connection Settings

4. Apply the settings and close the options dialog.

Now you should be able to browse the repository content within your browser. If

navigating to an URL that points to a repository artifact or a folder, the proxy will tell the

ModelBus server to deliver an HTML page displaying information and content of the

artifact or folder, respectively. In order to access the repository content, you have to

authenticate to the server with valid credentials for a user that has sufficient access rights

for the given URL.

For example, if you enter the URL http://www.modelbus.org to the browser, it will not

show the project’s website but the corresponding folder in the repository. When

requesting repository content first, the browser is prompting for authentication (see

Figure 29).

Figure 29 Authentication Dialog for ModelBus Repository

Please enter valid credentials (e.g. Admin and ModelBus for default Admin user) and confirm.

After successful login, the browser will display a HTML page as depicted in Figure 30.

ModelBus User Guide

49

Figure 30 Proxy HTML Page for namespace http://www.modelbus.org

Within the tap Repository Browser you can browse the content of the folder and some

metadata by selecting the entries of the subfolders or files. When navigating to the URL

http://www.modelbus.org/system/model/user.ecore, the browser will show metadata of the

last commit of the ModelBus user meta-model like the user that has created the model, its

current revision and last commit date, etc.

The tab OSLC Resources allows browsing information about OSLC resources contained in a

model and even in all models within a given folder (see Figure 31).

 ModelBus User Guide

50

Figure 31 Information about OSLC resources contained in the system folder

In the default setup, only OSLC information corresponding to the OSLC Core 2.0 specification

(see http://open-services.net/bin/view/Main/OslcCoreSpecification) like the title, the

description and the (about) URI of an OSLC resource are included in that list. Beside

text/html, you can also request a different representation of the resource by changing the

HTTP Accept header for the request. For example, you can request a RDF/XML

representation of the ModelBus user meta-model (URL:

http://www.modelbus.org/system/model/user.ecore) by setting application/rdf+xml as

Accept header value (see Figure 32).

http://open-services.net/bin/view/Main/OslcCoreSpecification

ModelBus User Guide

51

Figure 32 RDF/XML representation of the ModelBus user meta-model user.ecore

You can also upgrade your setup by adding support for other OSLC domains like

Requirement Management (see http://open-

services.net/bin/view/Main/RmSpecificationV2) and Architecture Management (see

http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-

Specification-Version-2.0/). If you are interested in such an upgrade, please contact us.

Beside the Repository Browser and the OSLC Resources tabs, an additional Tab Source is

available in the context of artifacts that allows to display the content of an artifact, e.g. the

user.ecore model (see Figure 33).

http://open-services.net/bin/view/Main/RmSpecificationV2
http://open-services.net/bin/view/Main/RmSpecificationV2
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/

 ModelBus User Guide

52

Figure 33 Content of the ModelBus user meta-model

ModelBus User Guide

53

7. Installing ModelBus Client for Eclipse

Like the ModelBus server itself, the ModelBus TeamProvider client release 1.9.7 or higher is

designed to obtain the required configuration options in a two-step manner. At first, it tries

to locate the ModelBus configuration model. In the second step, if no configuration model

was found, the TeamProvider client will rely on the values for the environment variables

MODELBUS_REPOSITORY_LOCATION and MODELBUS_NOTIFICATION_LOCATION for

configuration.

7.1 Configuration Options with Local ModelBus Server

If you have either a local ModelBus server installed or a configuration model created and the

MODELBUS_ROOT environment variable set to the corresponding value (see section 3.1.1),

the TeamProvider will be able to load all the required configuration options from the

configuration model. Otherwise, you will have to define the environment variables

MODELBUS_REPOSITORY_LOCATION and MODELBUS_NOTIFICATION_LOCATION as described

in section 7.2.

7.2 Configurations Options for “Standalone” Client

If you neither have a local ModelBus server installed nor at least the configuration model

available to the ModelBus framework (see section 3.1.1), the ModelBus TeamProvider client

first needs the same environment variable MODELBUS_REPOSITORY_LOCATION as the server

that points to the location where the server is running (Figure 34). “localhost:8080” or

“0.0.0.0:8080” must be replaced by the real host and port it is running on.

Figure 34 MODELBUS_REPOSITORY_LOCATION Variable

In addition, the ModelBus TeamProvider client needs the

MODELBUS_NOTIFICATION_LOCATION environment variable set (e.g. tcp://localhost:61616)

in order to be able to receive the notifications broadcasted by the ModelBus server (Figure

35).

 ModelBus User Guide

54

 Please mind the “tcp://” in the notification address.

Figure 35 MODELBUS_NOTIFICATION_LOCATION Variable

7.3 Installing TeamProvider Feature for Eclipse

ModelBus comes with a set of client tools for Eclipse. This contains a TeamProvider

implementation, a model repository browser and a notification view. These client tools can

be installed in any Eclipse based tool and provide basic client functionality for ModelBus.

It is suggested to use the “Modelling Tools edition” since it includes a lot of tools needed for

ModelBus TeamProvider. You may use the following link to pick up an Eclipse Modeling Tools

distribution:

http://www.eclipse.org/downloads/

You can install Eclipse by just unpacking the archive to the location you prefer. Then start the

Eclipse and call “Install New Software” from the “Help” menu and press “Add” in the window

popping up (Figure 36).

http://www.eclipse.org/downloads/

ModelBus User Guide

55

Figure 36 Adding New Software Site (1)

In the window appearing enter the location of the update site – you find it on the ModelBus

Download page (see http://www.modelbus.org/modelbus/index.php/downloads/current-

release. Give the site a name e.g. ModelBus (Figure 37).

Figure 37 Add a New Site (2)

After pressing OK, the software available will be shown and you select all features to be

installed. Start the installation by pressing “Next” (Figure 38). You will be guided through the

next steps of the installation by Eclipse. For our example, in addition to the ModelBus

TeamProvider software which is always needed, you can also install the ModelBus Services

Examples, the Interactive Modeling software or the Papyrus Adapter which are optional.

There are two Papyrus Adapters to install which are compatible to different versions of

Papyrus MDT. You have to choose one of them depending on your Papyrus installation.

http://www.modelbus.org/modelbus/index.php/downloads/current-release
http://www.modelbus.org/modelbus/index.php/downloads/current-release

 ModelBus User Guide

56

Figure 38 Available Software

After having installed the ModelBus TeamProvider, please restart Eclipse to apply the

changes properly. Then, in case of ModelBus release 1.9.7 or higher, please open the

ModelBus preferences page, specify the user credentials and set the path to the

configuration model. Optionally, you can tell the TeamProvider to use a SSL encrypted

communication with the ModelBus server if the setup of the latter supports this (see section

4). Figure 39 shows some exemplary configuration settings using the ModelBus preferences

page.

ModelBus User Guide

57

Figure 39 ModelBus Teamprovider Preferences Page (1.9.7 or higher only)

7.4 Test the ModelBus Server and Client installation

In this section we will show how you can test your installation.

Start the client and create a new Java project (Figure 40). Name it “Test1-MR”.

Figure 40 Create a Java Project

1. Right click on the newly created Project to open the context menu and select “Team”

and “Share Project…” (Figure 41).

2. Select ModelBus as repository type (Figure 41)

3. The repository creation/selection is disabled (grayed) (Figure 41)

 ModelBus User Guide

58

Figure 41 Share Project via Team Menu

What happened?

ModelBus repositories have Access Control! Refer to section 8 for setting user credentials.

Try again to share project (see Figure 42 Share Project via Team Menu – Second Try). Step 1

and 2 are the same as in the first try (Figure 41). Now we can select the entry

“http://localhost:xxxx/..... “. Enter a namespace for the project in the repository in the

location field after the” http://” as you like it. In our example it is “Test1-MR”. Press “Finish”

afterwards. To commit the content of the project you have to synchronize your project and

click commit (see Figure 43, Figure 44). You can enter a commit message and press finish.

ModelBus User Guide

59

Figure 42 Share Project via Team Menu – Second Try

Figure 43: Synchronize the shared Project

 ModelBus User Guide

60

Figure 44 Commit project via Synchronize View

Now we have to switch to the “ModelBus Repository Exploring” perspective (Figure 45):

1. Select “Other” within the first step

2. From the window opening you can select “ModelBus Repository Exploring”

Figure 45 Select ModelBus Repository Exploring Perspective

Within this perspective we can see the newly created namespace in the ModelBus Repository

view (Figure 46).

By the way: the “Test1-MR” artifact we created in the Eclipse Explorer (e.g. in the Java

Perspective) is called a Project. In the “ModelBus Repository Exploring” perspective we call it

a namespace since it represents a namespace in the repository. The names of both need not

necessarily be the same. Using the “Share Project” they are associated to each other.

ModelBus User Guide

61

Figure 46 The Newly Created Repository

PART III

Eclipse Client

ModelBus User Guide

65

8. ModelBus Repository Access Control

To work properly with the ModelBus Client for Eclipse the correct user credentials need to be

set. Therefore execute the steps illustrated in Figure 47:

1. Select Preferences

2. There select the “ModelBus” preferences

3. Here you can enter “Username” and “Password”. Be default, ModelBus is shipped

with username “Admin” and password “ModelBus” configured. This will be those to

be used if you freshly installed a new local ModelBus repository.

If you did not install the ModelBus repository locally on your own machine, you have

to ask the administrator of the repository you are linked to for the credentials

password to use.

Figure 47 Set ModelBus User Info

 Additionally, you have to enter the path to a ModelBus configuration model. If you

want to connect to a ModelBus server using HTTPS and the server itself is configured to run

using the protocol, you can provide a ModelBus configuration model to the Team Provider

including the required information for encrypted communication (see chapter 4 for more

information concerning the setup). Therefore, the ModelBus Preferences Page provides two

additional configuration options (see Figure 48):

 ModelBus User Guide

66

Figure 48 ModelBus TeamProvider HTTPS Setup

1. Configuration Model: This option states which configuration model should be used for

the setup. If you have a ModelBus server running locally, this should (but does not

necessarily has to) be the configuration model included in the ModelBus server

distribution (see chapter 3.1.1). Otherwise it can be placed at a file system location of

your choice.

2. A checkbox to tell the Team Provider whether to use encrypted communication. This

option requires the availability of a configuration model as stated in the

“Configuration Model” option. Changing this option at runtime may require restarting

the Team Provider.

The connection status to the ModelBus repository is indicated by an icon in the status line of

the “ModelBus Repository Exploring” perspective (see Figure 49).

Figure 49 Connection status to ModelBus repository

If the ModelBus icon is greyed, there might be a problem with the connection to the

repository. When you move the mouse cursor over the icon, the connection status is shown

ModelBus User Guide

67

as a tooltip. In order to show a status view including services connected to the ModelBus,

please click on the icon.

 ModelBus User Guide

68

9. Managing Access Rights with ModelBus Client for Eclipse

If you do not have a ModelBus server running, just start it as described in section 3.2. The

client is started by starting the Eclipse it is installed in.

9.1 Finding the “model” namespace in the repository

Switch to the “ModelBus Repository Exploring” perspective (see Figure 45).

There you can explore the model repository and can find the namespaces present in the

repository (e.g. the one created earlier in section 7.4). The interesting one is

www.modelbus.org. Expanding this one will show something similar to Figure 50.

Figure 50 ModelBus repository tree

The ModelBus.user model is the one which is needed for managing access rights to

ModelBus. It can be opened in the User Model Editor via the context menu of the ModelBus

Repository view (Figure 50). This will look like shown in Figure 51. The file shown there is the

“head” revision directly from the repository. Since it is not a local copy you are not allowed

to change it and it is opened “read-only”.

ModelBus User Guide

69

Figure 51 ModelBus.user opened in User Model Editor

To be able to edit the model a local copy of it has to be created in the local workspace.

9.2 Check out a name space to the local workspace as a shared project

Open the “ModelBus Repository Exploring” perspective and expand the

“http://www.modelbus.org/system/model” namespace (see section 9.1).

On “model” select “Check Out” in the context menu (Figure 52).

Figure 52 Check out the “model” name space

Switching back to the Java perspective you will find a “model” project, the shared one from

the repository. You can now open ModelBus.user in a User Model Editor (Figure 53). This will

 ModelBus User Guide

70

open an editor for the tree-view of the model. Do not use the text editor. This will only open

the model in a plain XML view and not check your modifications for syntactical correctness.

You have a great chance to destroy the accessibility of ModelBus.

Figure 53 Open ModelBus.user in User Model Editor

After finishing the editing of the user model you have to save the changes (in the workspace)

and also to commit them back to the repository. In the case of conflicts we will get informed

during the commit. The Team Synchronizing perspective, will be explained in section 11.

9.3 Add a new user and commit changes to the Repository

Figure 54 shows ModelBus.user in the user Model Editor in a tree view. During editing it will

be aware of the corresponding user meta model and therefore give support to make only

syntactically legal changes which are conform to the meta model.

Figure 54 ModelBus.user in User Model Editor

To be able to see details about the elements, you need to open the Properties View (see

Figure 55). In Figure 56 you can see the user model with the properties of the selected “User

Admin” model element.

ModelBus User Guide

71

Figure 55 Open Properties View

Figure 56 ModelBus User Model with Properties View

For adding a new user (see Figure 57):

1. Create a User element under Model

2. Set its properties (Name, Password)

3. Create a Rule element within User

4. Set its properties (Rule, Mask)

For Mask you can set the values 1, 2, 4, -1 with the following meaning: Read=1, Write=2,

Execute=4 and Everything=-1.

 ModelBus User Guide

72

Figure 57 Add a new User

Next you have to save the changed model in the local workspace and afterwards to commit

the changes back to the repository (see Figure 58).

In the case that there are activities by other team members on the user model you should do

a synchronize before the commit and thereby switch to the Team Synchronizing perspective

which is useful to handle the relevant aspects with concern to discovering and managing

conflicts. This will be described in section 11 in detail.

ModelBus User Guide

73

Figure 58 Commit Changes to Repository

After committing it to the ModelBus repository you may disconnect the shared project and

even delete it from the workspace (see Figure 59 (1) and (2&3)).

Figure 59 Disconnect shared project and delete it from workspace

The content of the Package view (1) and the Modelbus Repository (2) after disconnect and

delete is shown in Figure 60. The changed ModelBus.user is removed from the workspace.

You can even inspect it there by opening it in the User Model Editor (read-only). If the new

 ModelBus User Guide

74

user is not shown in the ModelBus.user file in the repository you probably forgot to save the

file in the workspace before commit or you completely forgot to commit.

Figure 60 Package View and ModelBus Repository (Browser) after Delete from Workspace

9.4 Change the password for the current user

Checkout the ModelBus.user to your local workspace (see section 9.2), open the model in the

User Model Editor (see Figure 53) and enter the password for the current user in the

Properties View.

Figure 61 Change password of the current user

Save the model and commit the model into the repository. You get a message box asking you

to change your password in the ModelBus Preferences Page, too (see Figure 62). After

pressing “Ok”, you get a message that a problem occurred because the combination of

ModelBus User Guide

75

username and password is not valid (see Figure 63). Then, you have to change your password

in the ModelBus Preferences Page (see Figure 47). After synchronizing the model project, you

will see conflicts, which can be resolved by “overwrite” or “ignore remote” and “commit…”.

After this procedure, you can work on normally.

Figure 62 Info Dialog when trying to change the password of the current user

Figure 63 No valid username and password after changing ModelBus.user

9.5 Example User Access Model

This section gives a small example how to create access rules in order to separate access for

the ModelBus users in a coherent and consistent way. This example has a fairly simple

respository structure as outlined in Figure 64.

 ModelBus User Guide

76

Figure 64 Example Repository Structure

In this example we have three developers: User1, User2 and User3. All shall have access to

the projects folder, as they store projects in this folder. But each developer shall only see its

own project. So all three developers are bound to the user group developer which contains

access rules for accessing the namespace http://project and in addition rules for accessing

other relevant namespaces, e.g. http://modelbus.org/system/model. In Figure 65 you can see

a fundamental set of rules which would be needed for the developer user group. It also

shows the individual rules for each of the developers.

ModelBus User Guide

77

Figure 65 Rules for Developer User Group and its users

 ModelBus User Guide

78

10. Checking ModelBus and Services Status

There are different ways of checking the availability of the ModelBus. One has been used

before and is usable independent of the use of the TeamProvider ModelBus client. Within an

Web browser window the invocation if the address that has been specified within the

MODELBUS_REPOSITORY_LOCATION variable or as the repositoryLocation, respectively (see

section 3.1) followed by the query string “?wsdl” will display the WSDL of the ModelBus

repository. In our example the invoke: http://localhost:9191/modelbusrepository?wsdl.

Another possibility to check not only the ModelBus availability but also the status of available

services is offered in the TeamProvider client. In the status line there is a small ModelBus

icon1 (see Figure 66). Availability of ModelBus will be indicated by a red icon, unavailability by

a grey one. If the icon is clicked, the ModelBus Status View will be focused which shows more

detailed information about the repository location and the registered services (see Figure

66).

Figure 66 ModelBus Services Availability

1 If it is not visible please switch to the ModelBus Repository Exploring perspective once (see Figure 45 how to
open it if not done before). Afterwards it should be visible in other perspectives, too.

http://localhost:8080/modelbusrepository?wsdl

ModelBus User Guide

79

11. The Team Synchronizing Perspective

To illustrate the synchronization process and further aspects of ModelBus a small UML

example model shall be introduced. If you have installed an Eclipse distribution package

including the Modeling Tools for your ModelBus client, you may create the example UML2

class model and diagram directly within your client. Create an empty project “Demo-

Example” with a folder “models” in it. Within it you create a folder “class-models” where you

can create the class diagram by invoking “New  Other” in the context menu of it and select

“Class Diagram” (see Figure 67). Name it “library”. This will automatically create the UML

model (“library.uml”) when you create and fill up the class diagram (“library.umlclass”).

Figure 67 Create a UML model and class diagram

The UML class diagram and model example is shown in Figure 68.

 ModelBus User Guide

80

Figure 68 The simple UML demo example

To describe the Team Synchronization perspective we will also need the following ModelBus

configuration:

 We have our local ModelBus repository installed as described in section 3.1. The

server has been started and is running. We have installed and defined two users for it:

“Admin” and “kde” (see section 9) – both at the moment have the right to do

EVERYTHING (mask=-1).

 We use two clients with separate local workspaces, one for user Admin and the other

for user kde (see section 8).

 The initial ModelBus.user model in the repository looks as shown in Figure 69 (with

the properties: passwords for “Admin”: “ModelBus”, for “kde”: “kdeModelBus” , for

“kde2”: “kde2ModelBus” and mask=-1 for all of them in the rule entry)

Figure 69 Initial ModelBus.user for the scenarios

ModelBus User Guide

81

11.1 Add a project to the ModelBus repository

To illustrate the functionality offered in the Team Synchronizing perspective we around a

little bit with the UML model created at the beginning of this section (see Figure 67 and

Figure 68).

We are registered as ModelBus user “kde” for the client we are using and work in the local

workspace “MB-Client-Workspace”. This is important because we will use a second client

with a separate local workspace later on in parallel.

As the first step we will create a shared project/namespace in the ModelBus repository (see

Figure 70):

1. In the context menu on the project folder in the Package Explorer select “Team” and

“Share Project”.

2. As type select “ModelBus”.

3. Give it a name for the location in the ModelBus repository. This name (namespace)

must be unique within the repository. For this reason you can inspect the

namespaces already used in the repository available in the field under beneath the

location field.

 ModelBus User Guide

82

Figure 70 Create a shared project in the ModelBus repository

Next we will synchronize the content of the local workspace shared project with the content

in the ModelBus repository (see Figure 71):

1. In the Package Explorer we can see the folder structure of the local (shared) project.

2. Select the folder we want to synchronize and from the context menu invoke “Team”

and “Synchronize”. This will ask us to switch to the Team Synchronizing Perspective

shown in the next step. In our example we plan to put the whole project into the

ModelBus repository, which makes it easier for another user to get it working for him.

So we execute the “Synchronize” on project level to include all subfolders and files in

it. The “Synchronize” is not absolutely required but a good style of working. We at this

moment know that there is no conflicting content in the repository. But “by accident”

another client could have created conflicts. Using “Synchronize” first will discover this

conflict.

3. In the Team Synchronizing Perspective, which is offered automatically, we see all

material that has been newly created in the local workspace is not in conflict with

anything in the repository and can be committed to the repository. This is indicated

by the grey arrow with the plus inside it.

Figure 71 Synchronize local workspace and ModelBus repository

Within the next step we will commit it to the ModelBus repository (see Figure 72):

ModelBus User Guide

83

1. In the Synchronize View of the Team Synchronizing Perspective select the

“DemoExample” and in its context menu the “Commit” operation.

2. When we switch to the ModelBus Repository Exploring Perspective and expand all the

entries underneath “DemoExample”, we will find all the material stored in the

repository.

Figure 72 Commit project to ModelBus repository

To check that it is really there, we go back to the Java Perspective and the Package Explorer

(see Figure 73).

1. In the context menu of our DemoExample project we select “Team” and the

“Disconnect” option to disconnect the project from the repository.

2. Then we delete the project form the local workspace.

3. Do not forget to select the “Delete... content …”.

 ModelBus User Guide

84

Figure 73 Discontinue share and delete local project

Now we can again check out the content we just removed from the ModelBus repository (see

Figure 74). Go to the ModelBus Repository Exploring Perspective, select the “DemoExample”

and in its context menu the “Check out”. If you forgot to remove the project content from

your disk (step 3 in Figure 73), you will see a window like shown in Figure 75 and must select

to overwrite the stuff in your local workspace.

Figure 74 Check out the project again

ModelBus User Guide

85

Figure 75 Overwrite request by Check Out

Switching to the Java Perspective, expanding the project and folder and opening the UML

model and diagram will show us that we got it back unchanged (see Figure 76).

Figure 76 Demo example project is back again

11.2 Producing and discovering conflicts

To produce conflicts we need two clients working with separate local workspaces at the

same time on the same stuff.

We are still registered as user “kde” in our client and work on workspace “MB-Client-

Workspace”.

We now start a second client and let it work on a separate workspace “MB-Client-Workspace

2”. We now open the preferences of it and set the ModelBus user (see also section 8 and

Figure 47). We use name “kde2” and password “kde2ModelBus”.

 ModelBus User Guide

86

Now we select the ModelBus Repository Exploring Perspective (maybe we have to do it as

shown in Figure 45).

Next we will check out the DemoExample as we did it in the previous section (see Figure 74).

At this point both clients have checked out the same version from the ModelBus repository

and we can create changes on the model and diagram that will produce conflicts afterwards.

Client 1 will create a new class “Reader” and associate it while client 2 changes the name of

class “Writer” to “Author”.

Figure 77 Conflicting modifications done

Now we try to commit the changes to the ModelBus repository.

Client 1 starts (see Figure 78):

0. It calls the Team Synchronize for its whole project in the Package Explorer.

1. Two artifacts (library.uml and library.umlclass) have been modified in the local

workspace (grey arrow left to right) and can be check in without conflicts.

2. Invoke “Commit” for each of the modified artifacts (only shown for library.umlclass in

Figure 77).

3. After the commits we find new versions (see numbering) when we look in the

ModelBus Repository.

ModelBus User Guide

87

Figure 78 Commiting modifications from client 1

Next client 2 will try. It also invokes “Synchronize”, but gets a conflict indicated. The red

arrow on library.uml indicates that there are conflicting changes between the content of the

ModelBus repository and the local workspace. The arrow goes in both directions what

indicates that there have been changes in the repository as well as in the local workspace

during the check out and the synchronize. In addition we see a blue small arrow (right to left)

on library.umlclass, the class diagram, which indicates that it has been changed in between in

the repository, too, but there are no conflicts.

Reflecting about these indicators, we can derive: there have been changes in the repository

concerning the UML model and the diagram while client 2 introduced his changes. These

changes concerned the model as well as the diagram. Since client 2 did not change the

diagram but only the model (rename a class), there are no “conflicts” concerning the diagram

but for the model there are changes in both directions.

Client 2 could decide to just discard his local changes, check out the modified version and try

again or try to inspect the conflicts more deeply using a compare editor. This will be shown in

the section 11.3.

 ModelBus User Guide

88

Figure 79 Synchronization conflicts indicated for client 2

11.3 Inspecting the conflicts using a Compare editor

Additional help resolving the conflicts can be obtained by invoking the Compare Editor

(Figure 80). This is based on the EMF Compare (see

http://wiki.eclipse.org/index.php/EMF_Compare).

Figure 80 Invoking the Compare Editor

The Compare results for our UML model (library.uml) are shown in (see Figure 81). The UML

model version client 2 wants to check in is shown in the bottom right window, the one in the

ModelBus repository in the bottom left window. Expand the trees as far as you need them.

http://wiki.eclipse.org/index.php/EMF_Compare

ModelBus User Guide

89

Figure 81 Results of the Compare Editor invocation

The Compare Editor allows you to copy all or selected changes from the “left” to the “right”

and to propagate from one to the next change. Whether this is helpful for a specific conflict

or not must be decided individually. In our situation the UML model and diagram are two

separate instance files of meta-models. The compare editor therefore handles them

separately and therefore may create inconsistent model/diagram situations.

So mostly the compare editor will only be a helper to more deeply identify the conflicts.

11.4 Some explanations on the Team Synchronizing perspective

Within this section some features of the Team Synchronizing Perspective shall be

summarized.

 ModelBus User Guide

90

First of all we have the indication of changes and conflicts in the Synchronize view (see Figure

82):

 Blue arrow (right to left) indicates changes in the repository

 Grey arrow (left to right) indicates changes in the local workspace

 Red arrow (both directions) indicates conflicts

 Additional + in the arrow indicates additions

 Additional – in the arrow indicates deletions

In the Synchronize View you can select filters from the menu bar to only show changes in a

specific direction or conflicts. You can also invoke an operation there to merge all non-

conflicting changes.

Figure 82 Synchronize View and Arrow Symbols

Alternatively one can synchronize the changes between the local workspace and the

repository on an object to object basis using the commands in the context menu of the

object (see Figure 83):

 Commit: Copies the object from the local workspace to the repository with a dialog if

there are conflicts.

 Update: Copies the object from the repository to the local workspace with a dialog if

there are conflicts.

 Overwrite: Copies the object from the repository to the local workspace without

asking.

 Ignore Remote: Copies the object from the local workspace to the repository without

asking.

ModelBus User Guide

91

Figure 83 Synchronization Operations

 ModelBus User Guide

92

12. Locking Elements in the Repository

This chapter describes the possibility of locking elements in the ModelBus repository. This

always works with complete files and models as described in section 12.1. There exist

ModelBus adapters for Papyrus MDT and RSA and an adjusted Papyrus 1.12.3 version that

allows locking and unlocking for model elements as described in section 12.2.

12.1 Locking Files and complete Models

Assume the situation that more than one user want to work on the same files or models at

the same time. In this situation they can use the ModelBus repository, store their files and

models there and synchronize their work using the lock mechanism offered.

This shall be illustrated using a simple text file and a simple UML model within this section.

Assume the first user has created a project containing a simple text file and a simple UML

model as shown in Figure 84 and shared and committed it to the repository (see Figure 85).

Figure 84 Example created by first user

ModelBus User Guide

93

Figure 85 ModelBus Repository view on the example

A second user with its own ModelBus client, username and local workspace checks out the

project (Figure 86) and probably wants to make some changes on the e.g. text files.

Figure 86 Second User Check Out

To prevent the (text) file from being changed intermediately he may set a lock on the text file

(see Figure 87 (1)).

 ModelBus User Guide

94

Figure 87 Locking a File

The lock will be indicated to the user who set it and is still able modify it with a small green

lock icon (see Figure 87 (2)) and to the other user(s) by a red icon (see Figure 87 (3)).

The lock can be released using the Unlock command (see Figure 88) by the user that initiated

the locking.

As you can see in Figure 88 another user has locked the UML file intermediately indicated by

the red lock icon.

ModelBus User Guide

95

Figure 88 Unlock a File

12.2 Locking Model Elements in the Repository

The following section will explain a specific feature implemented in ModelBus adapters for

Papyrus MDT and RSA in combination with the ModelBus Repository.

Two users working simultaneously on the same model may synchronize their work using the

locking and unlocking of model elements in the repository.

One of the users may invoke the lock operation on a model element (see Figure 89). The

result will be indicated to all as shown in Figure 90 by a green lock symbol to the user who

has set the lock and with a red lock symbol to the others. In addition the text “locked” and

“locked by …” will be shown which will also show the name of the user that initiated the lock.

The unlock operation (see Figure 91) will release the locks.

 ModelBus User Guide

96

Figure 89 Locking a Model Element

Figure 90 Lock result indication

ModelBus User Guide

97

Figure 91 The Unlock Command

 ModelBus User Guide

98

13. The ModelBus Repository Exploring Perspective

The ModelBus Repository Exploring perspective allows inspecting the content of the

repository. A screenshot of the perspective is shown in Figure 92.

Figure 92 ModelBus Repository Exploring

The ModelBus Repository Perspective can also be used to navigate through a model (in a tree

view). You can select the types to browse in the preferences (see Figure 93).

ModelBus User Guide

99

Figure 93 Browsing Models in the Repository

 ModelBus User Guide

100

14. Notifications

The ModelBus includes and offers notification service. This can be used to send notifications

between services and to clients. The notifications are displayed in a specific view in a client

(see Figure 94). In the example shown, the successful update of the repository as a result of

a commit request is displayed.

Figure 94 The Notification view

Within the Eclipse preferences exists a section for the notifications in the ModelBus

subsection (see Figure 95). Here you can select that you want to receive notifications

concerning open models only and / or specify a filter (regular expression) for the notifications

to receive.

Figure 95 Notification Preferences

ModelBus User Guide

101

15. Dependencies

The ModelBus provides dependencies support. That means, if you check in a model all its

referenced models and meta models are automatically checked in, too. Furthermore, the

incoming references of a model or a model element can be displayed in the Dependencies

View.

Within the Eclipse preferences there is a preference page for dependencies support (see

Figure 96) where you can enable “check dependencies” and declare the model extensions

you want to support. “Check dependencies” is disabled by default. In Figure 96 we have

enabled the dependencies support for UML models.

The Dependencies View can be opened via the “show Dependencies” action, which can be

selected in the context menu of a model file or a model element in the submenu

“ModelBus”. Figure 97 shows incoming references for a model element. You can see

information about the referencing object (URI, name, type). Figure 98 shows incoming

references for a model.

Figure 96 Dependencies Preferences

 ModelBus User Guide

102

Figure 97 Dependencies View for a Model Element

Figure 98 Dependencies View for a Model

ModelBus User Guide

103

16. Fragmentation

You have the ability to divide your models into several fragments. Select the entry “control

fragment” in the submenu “ModelBus” in the context menu of a model element (see Figure

99).

Figure 99 Control Fragment in the Repository View

A repository wizard opens where you have to choose the destination namespace for the

fragment file. Enter the filename and click on the button “Finish” (see Figure 100). Then you

have to synchronize your project. The previously created fragment file is seen in the

Synchronize View and you have to update your project. Now you can work on the fragment.

After you have committed the changes, the fragment can be uncontrolled again by selecting

“uncontrol fragment”.

Figure 100 Choose Destination Folder and enter the File Name for the Fragment

 ModelBus User Guide

104

17. Interactive Mode

ModelBus offers an interactive mode that makes it possible to change models interactively in

near real time and to commit model changes incrementally. There exists an “Interactive

Modeling” preferences subsection within the ModelBus Preferences section (see Figure 101)

where you can enable three different checkboxes. The “Interactive Modeling” checkbox

enables the interactive mode in general. Before you can use the interactive mode, you have

to ensure that the model has been committed to the repository with all its dependencies

(see section 15).

Figure 101 Interactive Modeling Preferences

To enable the interactive mode for your model, the model has to be opened in an editor. If

the model is shared and if the editor uses transactional editing domains, the “Interactive

Modeling” button in the toolbar is enabled (see Figure 102). When the button is activated,

you are ready to work interactively. After each change transaction, a change set is committed

to the repository and clients that work on the same model and have enabled the interactive

mode are updated automatically. The second checkbox enables commits on save. It can be

enabled only if the first checkbox “Interactive Modeling” is enabled. In the commit on save

mode your changes are committed in a batch after saving the model. The third checkbox

enables automatic locking and unlocking of model elements to change. This can only be used

in combination with the commit on save mode. When you start to change your model, the

current changed model element and all its children are locked and cannot be changed by

other developers. After saving your model, all locked elements are unlocked again.

ModelBus User Guide

105

Figure 102 Interactive Modeling Button

PART IV

Orchestration

ModelBus User Guide

109

18. Orchestration

ModelBus operations and services based on ModelBus are specified as web services. Their

interfaces are described by a WSDL and can be invoked using webs service mechanisms. This

offers the chance to use all well-known and proven methods and tools for orchestration in

the web services area in the context of ModelBus orchestration, too.

In addition the ModelBus repository emits notifications whenever its contents, e.g. a model,

has been created, updated or deleted.

Both features are very useful to automate workflows in the model based development

environment based on ModelBus.

In the web services area at least two approaches for orchestration exist:

 BPMN (Business Process Modeling Notation), a graphics based modeling approach for

business workflows, defined in an OMG specification (http://www.bpmn.org/)

 BPEL (Business process Execution Language), an XML based language specified by

OASIS (http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html)

BPMN is a graphical notation which is not directly executable, meanwhile BPEL workflows

can be executed but there is no standardized graphical representation for them.

Some BPEL tools have invented their own graphical representation. On the other hand BPMN

includes the specification of a mapping from BPMN to WS-BPEL.

There exist not only tools that allow the specification of workflows in BPMN or BPEL

separately but also tools that allow the graphical modeling of workflows using BPMN than

generate BPEL from it, deploy it and then execute it using a BPEL engine.

For one of those tools exists an open-source edition, that shall be used in the context of this

user guide to further on illustrate the orchestration in the context of ModelBus

(http://www.intalioworks.com/products/bpm/opensource-edition/).

The Intalio tool consists of two parts:

 Intalio Designer is used to model the workflows using BPMN, then augment them

with information from the web service specifications (WSDL) used and deploy them

to an execution environment.

 Intalio Server is the environment the BPEL based workflows are deployed to and

executed in.

http://www.bpmn.org/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html
http://www.intalioworks.com/products/bpm/opensource-edition/

 ModelBus User Guide

110

The Intalio tool also includes an extension for BPEL that supports human interactions

(BPEL4PEOPLE), which is also specified by OASIS.

The principle approach of defining a workflow starting with BPMN is mostly the same in

different tools supporting it:

 Specify the workflow using BPMN

 Add information about the service operations, notifications, data used based on the

WSDL

 Deploy the executable workflow to a server

 Execute it

A small example should illustrate the use of a very simple workflow in the context of

ModelBus based services. The workflow should illustrate the combination of a model editor

that changes a model, model repository to store it and a transformation tool (QVTService) to

execute a transformation if necessary.

Assume the following situation:

 A modeling service (e.g. some editor) is doing some changes within a specific model.

It stores the updated model to the repository.

 The Repository will emit an updateModel notification.

 Anybody interested in this event might receive it and react on it.

 A workflow in an orchestration tool will react on the update notification and

depending on some condition (e.g. if it is a specific type of model) invoke a

transformation service (QVT Service).

 If the transformation is invoked, it will transform the model (from the repository to

the repository.

18.1 Modeling the basic workflow with BPMN

The resulting basic BPMN diagram looks quite simple (see Figure 103):

 There are 3 separate pools representing the separate domains of the orchestration

workflow, the ModelBus repository and the transformation service. For reasons of

simplicity we did not include the model editor which would have been the initiator for

the update of the model in the repository.

 We have two tasks and one sub process: the Repositorynotification task sending the

notification about the model update; the transform task being used to execute the

transformation in the QVT service and the Transform task / sub process in the

workflow that invokes the QVT transformation.

ModelBus User Guide

111

 One start event in the workflow receives the updateModel notification and starts the

workflow.

 The “exclusive data-based” gateway decides whether the transformation should be

executed or not.

 Two end events mark the end of the workflow execution: one for the successful

execution and one in the case of an error (the one with the flash symbol in it).

 An intermediate/boundary event is used to catch exceptions during the

transformation at the boundary of the sub process.

 Flow connectors (solid arcs) represent the flow inside a pool while message

connections (dashed arcs) represent the sending and receiving of messages between

pools.

Figure 103 The Basic BPMN Diagram

The orchestration workflow still shows some error and warning symbols: the decision for the

gateway has not been specified yet and also the details for the messages received and send

are not specified. This will be described in section 18.2.

In addition we will have to define one of the exit paths of the gate as a default condition. This

path will be taken, whenever no other path qualifies. This is done by setting the “Default

condition” in the properties view for this path to true.

 ModelBus User Guide

112

First the possible modeling elements for BPMN should just be sketched. For a complete

specification of BPMN see the official OMG document at http://bpmn.org/.

The basic shapes (see Figure 104) allow modeling the separate domains using pools and

lanes, offer simple tasks or tasks executed in a loop and sub processes (simple and looping)

which represent “sub workflows”. Connectors represent the flow inside a pool (flow

connector) or between pools (message connection).

Figure 104 Basic BPMN Shapes

Events distinguish between start, intermediate and end events (see Figure 105):

 Start events mark the starting point of a workflow. The execution can be initiated

receiving a message or signal, some timer, some rules specified etc.

 Intermediate events mark the position between start and end of a workflow where

the reception or sending of an event is possible.

 End events mark the end of a workflow. They may signal whether the execution was

successful or not by issuing a specific event.

A special type of event is the compensation. This is used to realize a transaction like

execution within workflows. Normal transaction mechanisms are not always useful in the

context of business workflows since there duration could be hours, or even days or months.

Therefore the concept of compensation actions exists. For every subpart of a workflow (e.g.

specified as a sub process) that should probably “rolled back” should have the specification

of a flow of tasks that undo (compensate) the work of it explicitly. Those could start at an

intermediate event at the boundary of the sub process similar to the error event in Figure

103. The unsuccessful sub process will then end in a compensation end event. This will be

caught at the boundary of sub process and continue execution there undoing the actions of

the sub process.

http://bpmn.org/

ModelBus User Guide

113

Figure 105 Event Shapes

Gateways are the points in the workflow to branch and join the flow in a controlled way.

Figure 106 Gateway Shapes

18.2 Basic BPMN diagram with interface descriptions

Up to now the BPMN workflow knows that there are tasks that do something in different

pools, decision points, messages etc.

It does not know details about the messages exchanges, what ports/operations are

realized/implemented by what tasks what exactly is the decision in a gate etc. Due to that no

fully executable BPEL workflow can be generated. The information kept in the WSDL can be

used to augment the BPMN diagram. This will be illustrated here in the context of the Intalio

tool, but works in a similar way with other tools combining BPMN and BPEL. It might be that

they do not use “drag and drop”, but require you to set some additional properties for the

modeling artifacts in your diagram manually.

 ModelBus User Guide

114

As a first step the necessary WSDLs and XSDs have to be added to your project. You can do

this with “drag and drop” of the files or by using import.

Figure 107 shows how to use the RepositoryNotification WSDL as first step:

 Expand the WSDL and drag and drop the updateModel operation from the Process

Explorer to the RepositoryNotification/update task in the BPMN diagram (ModelBus

Repository pool).

 Select “Provide operation ‘updateModel’ …” when you are asked (the task will

provide the operation).

 Drag and drop the updateModelRequest from the updateModel operation (WSDL in

the Process Explorer) to the message going to the start event in the Orchestration

Workflow.

Figure 107 Assigning the Information from the RepositoryNotification WSDL

For the transform task in the QVT Service pool another approach shall be illustrated.

Assume we started with modeling the BPMN workflow in the Orchestration Workflow pool

only without filling up the QVT Service Pool. The situation could look similar to the one

shown in Figure 108.

ModelBus User Guide

115

Figure 108 Integrating the qvtservice.wsdl

Instead of first creating a BPMN task we may drag and drop the transform operation from

the qvtservice WSDL to the QVT Service pool (see Figure 110). This will ask as whether it

should create a single task for the operation (see Figure 109 (1)) or two linked task connected

by a flow representing the receive and reply separately (see Figure 109 (2)). We will select

the single task version.

Figure 109 Single or Separated Tasks

 ModelBus User Guide

116

Figure 110 Creating the Transform Task by Drag and Drop from the WSDL

Drawing the message flow connections between the transform task in the Orchestration

Workflow and the transform task in the QVT Service is done with the normal BPMN modeling

shapes but will automatically assign the request and respond messages of the transform

operation. The resulting diagram is shown in Figure 111.

ModelBus User Guide

117

Figure 111 The final BPMN Diagram augmented with the WSDL Information

The diagram still contains a warning marked at the decision gateway and errors on the

outgoing flows. The actual decision is not defined sufficiently.

18.3 Mapping data and using variables in the workflow

There are at least two places where we need to have access to the data in the workflow:

1. To describe the decision to be made in the gateway and

2. To send and receive info to and from the transform operation in the QVT service.

We got variables introduced to our BPMN workflow by assigning operations from the WSDL

to our message connections.

The first are introduced by the Repository Notification operation updateModel (see Figure

112): the two parameters of the updateModelRequest received by the start event in the

workflow.

 ModelBus User Guide

118

Figure 112 Repository Notification WSDL

These will be used in the decision. If the modelUri ends with “.uml”, that means it is an UML

model, the transformation shall be called.

Within Intalio Designer the “Mapper” view is used to connect the variables. Selecting the

decision gateway, opening the Mapper the request parameters are shown in the left column

(data sources). On the left we see the condition and in the middle column we will specify

how to build the decision. This is done graphically in Intalio Designer.

The mapping for the decision is shown in Figure 113.

Figure 113 Data Variable Mapping for the Decision

For the transform request the situation is similar except that we have to assign data to the

request parameters. Most of the parameters are constants. The modelURI is just passed

through.

ModelBus User Guide

119

Figure 114 Data Variable Mapping for the Transform Operation Request

18.4 The generated executable BPEL workflow

From the BPMN workflow an xml file with the executable BPEL workflow will be generated.

With the Intalio tool this file normally is complete and will not have to be touched. The

following sections should only give some glimpse into it to give an impression of the

correspondence between the BPMN and the BPEL workflows.

Figure 115 The Generated BPEL Workflow (Treeview)

 ModelBus User Guide

120

Looking at the BPEL workflow in the tree view of an xml editor (see Figure 115) the following

elements can be identified:

1. The receive of the updatemodel notification

2. The gate with its condition

3. The fault handler catching the exception

4. The assignment of the parameters and invocation of the transform

A lot of details are still hidden in the collapsed parts of the xml file. Nevertheless the

executable workflow could also have been created directly using the support of a BPEL

editor. In this case a non-graphical workflow editor or one with a proprietary graphical

notation would have to be used.

18.5 Deployment and execution of the workflow

To be executed the BPEL workflow and possibly needed additional xml files have to be

deployed to an appropriate BPEL server. In this case a BPEL 2.0 server has to be used. Using

the Intalio Server is most appropriate due to its integration with the Designer environment

but other BPEL 2.0 servers might work to.

Figure 116 BPEL Workflow Deployment

ModelBus User Guide

121

Just invoke Deploy (see Figure 116). Doing this the first time it will open a configuration view

to select the files to be deployed. To change the configuration afterwards, it can be invoked

directly. Pressing the deploy button will send the files and information to the server ready to

be executed.

The Intalio BPM-Server can be controlled using a server console in a web browser (see Figure

117).

Figure 117 The BPM Server Console

For more details on the BPM workflow definition, execution and control see the Intalio

documentation on the web site (http://community.intalio.com/) or the documentation of

your favorite tools.

18.6 Including user interaction in a workflow

The BPMN workflow (see Figure 118) caught exceptions from the transformation on the

border of the sub process invoking it. Exceptions can be handled in different passed (as done)

or automatically processed including a specific task / sub process or semi automatically

processed by invoking a human interaction.

http://community.intalio.com/

 ModelBus User Guide

122

Figure 118 The BPMN Workflow

For BPEL an extension (BPEL4People) exists that allows interactions with humans. Intalio

implements this in it tool. In the following section it shall be sketched how this feature can be

used in a workflow and how it will influence the automatic execution. The will not be a full

and detailed description of integration of human interaction in a workflow using the Intalio

tools. For that use the documentation and examples from the web site

(http://community.intalio.com/).

Human interaction means communicating information with human users. For this Intalio

allows to define “forms” which allow the definition of the information exchange. This must

be defined with the Designer tool. Intalio offers two different ways to define those forms. For

detailed information see the Intalio community documentation. Since only the principles of

human interaction shall be shown here, the outdated and less flexible way is used here I the

examples.

Then the interaction with a human user must be included in the BPMN workflow. Assume

that in the case of an exception in the transform operation a human activity shall be invoked

to do some “repair” depending on its success the normal or error exit shall be taken.

The form to interact with the user is shown in Figure 119. The upper part is to output the URI

of the model where the transformation went wrong. Normally you should deliver here

http://community.intalio.com/

ModelBus User Guide

123

detailed information about the error. The second is to input the result of the human action

and to deliver it back to the orchestration workflow.

Figure 119 Human Interaction form for the “repair action”

The repair process in the orchestration workflow will be started catching the exception at the

border of the transform sub process. It is shown in Figure 120. The task in there must be

linked to some tasks in a pool representing the human actor.

Figure 120 Orchestration Workflow Extension for the Repair Process

Therefore, an additional non executable pool has to be created and a chain of two tasks to

receive the action request and to respond when it is completed has to be created. This is

done by just drag and drop the form created to the pool and anther the question popping up

(see Figure 121).

The two resulting tasks in the Human User pool have two be connected to the corresponding

tasks in the orchestration workflow by message flows as shown in Figure 122. The order of

the message flows is important. They are automatically combined with the WSDL information

for the interaction.

In addition, we have to set the role of human the task should be assigned to in the properties

of the pool. The result is shown in Figure 122.

 ModelBus User Guide

124

Figure 121 Drag and Drop the Human Interaction Form

Figure 122 Message Flows to the Human Tasks and Role Property for the Pool

The last step to be done is the mapping of information:

1. In the “Invoke human action task” the model URI has to be assigned to the form info

(see Figure 123).

2. The condition for the gate has to be defined (see Figure 124).

ModelBus User Guide

125

Figure 123 Data Mapping of the Model URI

Figure 124 The Gate Condition in the Repair Sub Process

In addition, to the BPMS console of the server used to administer the workflows, there exists

an Intalio workflow console where a user logs in as a member of a specific role. When in our

case a member of the “Supporter” role logs in he will find the invoked human action in its

tasks, will be presented the form and react on it. After he sends the completion, the

processing will continue in the orchestration workflow.

Be aware that it can take hours, or even days or month until the human interaction is

completed. For this reason compensation actions instead of transactions must be used and it

may be useful to use timers in the orchestration workflow not to be forced to infinitely wait.

PART V

Developer API

ModelBus User Guide

129

19. ModelBus Architecture

The following section describes the ModelBus architecture in more detail. The first sections

describe the underlying concepts and the corresponding interaction pattern.

19.1 Concept

Within a ModelBus environment each artifact that is shared between different tools is

unique identified by a namespace. The namespace is represented by URLs. The namespace

could also be used to structure artifacts by grouping them into domains and sub-domains. An

example structuring can look like this:

http://www.mycompany.org/docs/example.doc

http://www.mycompany.org/models/

http://www.mycompany.org/models/mymodel

http://www.externalcompany.org/projects/models/b2bmodel

The example.doc file is identified within a ModelBus environment by a namespace which is

represented by the URL http://www.mycompany.org/docs/example.doc. Likewise, models

were addressed and identified by the same mechanism. Thus, the model mymodel is

addressed by the URL http://www.mycompany.org/models/mymodels. Both, file and model,

are grouped into the domain mycompany.org. However, they are separated into different

sub-domains.

In the context of ModelBus models are special artifacts which will be shared. In contrast to

plain files models have dependencies and references to other models. For instance a model

has no meaning without its meta-model. Thus, for instance, we have to share meta-models

as well in order to share models between tools. Furthermore, models can become very huge

with thousands of elements. However, due to the fact that models are well structured, we

can use model-driven techniques as incremental model transportation or transferring only

parts of model (model fragments) in order to deal with the complexity of such big models.

There are several other questions with respect to model sharing. Therefore, ModelBus comes

with a set of particular functions which handle model sharing issues like scalability or

consistency. This handling is transparent to the user and managed by the ModelBus

infrastructure.

Due to the fact that the ModelBus infrastructure is designed for model sharing in particular,

this also reflect to the connectors to the infrastructure. In general, we have to define a meta-

model for each tool, which will be connected to a ModelBus tool chain. Figure 52 illustrates a

generic ModelBus integration. The basic idea is that a tool wants to share its data with other

 ModelBus User Guide

130

tools in an integrated environment. In addition to that a tool can also provide operation for

others. However, in many cases tools don’t have the same data structure, data format or

data basis. Models can help. Therefore, we specify a meta-model of the tool internal data

and adapt them into a specific tool data instance model which conforms to the meta-model.

Then, we only exchange and share these instance models.

Figure 125 Generic ModelBus Integration

In today’s software development processes different tools are used in the same engineering

phases. For instance, Doors (http://www-03.ibm.com/software/products/de/ratidoor) and

Microsoft Office (Word/Excel) (http://office.microsoft.com) are important and frequently

used tools in the requirement engineering phase of software projects. Thus, we can also

define a meta-model for the requirement domain and share instances of it as well. Thereby,

we will have a common language for different tools in the same development phase.

Every instance model has an URL representing the namespace of it, regardless of domain or

tool. All models are stored in a model repository. The next section describes the repository

briefly.

19.2 Repository

The key concept of model sharing in ModelBus is realized via a model repository. This

repository interface is open and allows straight forward addressing of models via URLs. This

addressing schema also results in simple service interfaces, because only model references

instead of models are transmitted. Repository vendors can implement this interface in order

http://www-03.ibm.com/software/products/de/ratidoor
http://office.microsoft.com/

ModelBus User Guide

131

to be ModelBus conform. ModelBus itself is delivered with a built-in model repository, which

supports versioning, partial check-out of models and coordinates the merging of model

versions and model fragments.

The model repository is a web service and provides the following services and notifications.

service name description

checkInModel The checkInModel operation stores or updates the model into the
repository at the given modelURI and it creates a new revision. The
operation returns a checksum in order to verify the successful
transmission of the model. If the model does not exist within the
repository the model will be created initial by the operation

checkOutModel The checkOutModel operation gets a model from the repository
according to the given modelURI. If a specific revision of the model is
requested the URL needs to contain the corresponded revision number
or peq revision number

checkInFile The checkInFile operation stores the file into the repository at the
given fileURI. The file will initial created if it does not exist already.

checkOutFile The checkOutFile operation gets a file from the repository according to
the given fileURI. If a specific revision of the file is requested the URL
needs to contain the corresponded revision number or peq revision
number.

delete The delete operation removes the corresponding artifact according to
the given URL.

exists The exists operation checks whether the corresponding artifact exists
at the given URI with the given revision number.

getDir The getDir operation gets information of the RepositoryDirNodeKind
according to the given URL and revision’s version number.

info The info operation gets information of the artifact according to the
given URL and revision number.

lock The lock operation locks the artefact according to the given URL. The
timeout parameter specifies the timing end of the lock. If the timeout
value is 0 the lock is permanent and has no timeout.

unlock The unlock operation unlocks the locked artifact according to the given
URL.

getLocks The getLocks operation gets information of all locked artifacts
according to the given URL prefix.

specific notification

createModel The createModel event will triggered whenever a model was
created or initially stored in the repository.

updateModel The updateModel event will triggered whenever a new version of
model is checked into the repository.

deleteModel The deleteModel event will triggered when a model was deleted in

 ModelBus User Guide

132

the repository.

ModelBus make use of the call-by-reference interaction pattern which is described in the

next section.

19.3 Interaction Pattern

ModelBus provides an interaction pattern in order to enable model sharing in a distributed

and heterogeneous model-driven development process. Figure 53 depicts the general

interaction pattern in a ModelBus integration scenario.

Figure 126 ModelBus Interaction Pattern

The basic idea is that Tool A interacts as a consumer of the provided service of Tool B, which

interacts as a service. If Tool A wants to consume the service of Tool B it simply invokes the

corresponding operation in the ModelBus Stub. The generated stub will offer by the

ModelBus infrastructure automatically and it is based on distributed OSGI. The stub stores

the model into the repository, for instance by calling the checkInModel operation of the

repository. After that the stub invokes the service skeleton which is also offered by the

ModelBus infrastructure. During this invoking stub and skeleton only exchange the

references of the models. This means that the consumer only specify of URL of the model,

whereas the service skeleton only expects this URL. On the other hand the service skeleton

takes this URL and gets the model from the repository by calling checkOutModel. The

skeleton, itself, calls the corresponding implementation of Tool B.

The response is analog, due to the fact that the result data of the service operation is a

model as well. The response model will also check into the repository by the skeleton. The

skeleton returns to the stub only by transferring the URL of the response model. The stub

checks out the response model again and delivers it to Tool A.

The advantage of this is interaction pattern is that service interfaces become simple and only

use standard WSDL data types. Thereby, external tools, like Intalio BPMS Designer

ModelBus User Guide

133

(http://www.intalio.com/products/bpms/overview/) can be used in order to orchestrate

ModelBus services as well as exclusive or in combination with other non-ModelBus services.

19.4 Provider Adapter

The architecture of a provider adapter is illustrated in figure 54. In general, an adapter

consists of three parts. The colors shall depict the different parts.

Figure 127 Provider Tool Adapter Architecture

The blue part represents the tool logic and its data. Usually, a tool represents the data, which

the tool is working on, in its own format. Therefore, we have to adapt this internal data into a

common exchange format. For this reason we have to define an EMF-based meta-model that

represents all necessary aspects of the internal data in the context of ModelBus. The

concrete tool data are adapted into instances of this meta-model. This part is represented in

figure 54 by the green color. The third part of an adapter is a more generic part represented

by the red color. This includes several third party libraries as well as the ModelBus Core lib.

The core lib provides an API that enables the access to the model repository directly. This API

can also be used in order to querying or browsing the repository from a tool specific user

front end. The interaction between provider and consumer is realized via Apache CXF DOSGI

implementation (http://cxf.apache.org/distributed-osgi.html). Therefore, the integration

effort to ModelBus is similar to the integration effort of DOSGI. Furthermore, the core lib

provides a number of specific functions in particular for models like dependency

management or fragment support.

http://www.intalio.com/products/bpms/overview/
http://cxf.apache.org/distributed-osgi.html

 ModelBus User Guide

134

19.5 Consumer Adapter

A ModelBus consumer adapter isn’t very different to a provider. It also consists of the generic

part, the tool and its data and as well as the adaption part to a model-based representation

of the tool internal data.

Figure 128 Consumer Tool Adapter Architecture

In this generic example the consumer use the provider tool meta-model. This meta-model is

the common exchange format between these tools. The transformation between this format

and the tool internal data of the consumer is done by an adaption component. This

component is tool specific and different from tool to tool. However, a lot of tools already

have a model as basis for their internal data. And also many tools already use the EMF for

defining such models. In this case the adaption between tool internal data and the

corresponding tool instance model has no significant effort. Of course the consumer can also

use the ModelBus Core lib in order to browsing the repository as well as to check-in or check-

out models or other artifacts directly into the model repository.

The communication infrastructure framework is based on third party library for the

consumer as well. Again the DOSGi project is used to enable the web service functionalities

for remote services via SOAP over HTTP. Nevertheless, the communication frameworks as

well as the model handling facilities are completely transparent to the developers of the

provider or consumer.

ModelBus User Guide

135

19.6 ModelBus Core Lib API

One of the important classes within the ModelBus core lib is the ModelBusCoreLib. This class

encapsulates the remote access to the model repository and ModelBus services and

therefore provides an implementation of a so called “repository helper” or “services helper”,

respectively. The RepositoryHelper, which is the default implementation for a repository

helper, is located in the package org.modelbus.core.lib.dosgi.

The following section shows some examples in order to demonstrate how to work with the

ModelBus core lib. In addition to the RepositoryHelper class an example illustrates also how

to receive notifications from the ModelBus infrastructure.

 ModelBus User Guide

136

20. Code Examples

In the following we describe some examples how to use the core lib and interact with the

repository. The source code of these examples is available on the www.modelbus.org

website.

The starting point for the examples is that you have already gone through the installation

part of this user guide. Make sure that everything is installed correctly and the server

containing the model repository is up and running.

20.1 Repository Browser

This example illustrates how to use the core lib and its API in order to browse through the

repository.

Step 1 - Create an Eclipse Plug-In Project and add org.modelbus.core.lib.dosgi,

org.modelbus.cxf.dosgi.startup, org.eclipse.core.runtime and org.eclipse.emf.ecore.xmi to the

required plugin-ins in the project MANIFEST.MF file.

Figure 129 required Plug-ins configuration

Step 2 - Create a java class and the two properties.

public class RepositoryBrowserExample {

 public static IRepositoryHelper repository =

 ModelBusCoreLib.getRepositoryHelper();

 public static Session session = new Session();

}
We define a repository attribute of type IRepositoryHelper. To construct the

IRepositoryHelper we have to call the method getRepositoryHelper() of the class

http://www.modelbus.org/

ModelBus User Guide

137

ModelBusCoreLib. In addition to that we also need a session in order to authenticate with the

repository as a valid user.

Step 3 - initialize the session with corresponding data

public class RepositoryBrowserExample {

 // ...

 public static void initSession() {

 session.setId(EcoreUtil.generateUUID());

 Property propertyUserName = new Property();

 propertyUserName.setKey("username");

 propertyUserName.setValue("Admin");

 Property propertyPassword = new Property();

 propertyPassword.setKey("password");

 propertyPassword.setValue("ModelBus");

 session.getProperties().add(propertyUserName);

 session.getProperties().add(propertyPassword);

 }

}
In general, the user Admin with the password ModelBus is created initially by the ModelBus

infrastructure. This user information is encapsulated within the Session object.

Step 4 – use the ModelBus core lib API

public class RepositoryBrowserExample {

 // ...

 public static void main(String[] args) {

 // initialize the (static) session

 initSession();

 try {

 // retrieve the root entry from the repository

 RepositoryDirEntry root = repository.getRoot(session);

 System.out.println("Root:" + root.getName());

 // write out repository entries recursively

 writeEntries("+", root);

 } catch (IOException e) {

 e.printStackTrace();

 } catch (RepositoryRuntimeException e) {

 e.printStackTrace();

 } catch (RepositoryAuthentificationException e) {

 e.printStackTrace();

 } catch (NonExistingResourceException e) {

 e.printStackTrace();

 } catch (InvalidRevisionException e) {

 e.printStackTrace();

 ModelBus User Guide

138

 }

 }

 public static void writeEntries(String plus, RepositoryDirEntry

 entry) throws

 RepositoryRuntimeException,

 RepositoryAuthentificationException,

 InvalidRevisionException,

 NonExistingResourceException,

 IOException {

 // retrieve the child entries from an repository

 // entry from the repository

 // (note that revision -1 corresponds to the latest revision)

 RepositoryDirEntry[] entries =

 repository.getDirEntries(session,

URI.createURI(entry.getUri()), -1L);

 for (int i = 0; i < entries.length; i++) {

 System.out.println(plus + " " + entries[i].getName() +

 "(" + entries[i].getRevision() + ")");

 if (entries[i].getKind().equals(RepositoryNodeKind.DIR))

 {

 writeEntries(plus + "+", entries[i]);

 }

 }

 }

 public static void initSession() {

 // ...

 }

}

The main method of our class calls the initSession method. After that, the root node of the

model repository is fetched by the repository.getRoot(session) operation call. The return

value is of type RepositoryDirEntry. Figure 57 depicts the structure of a RepositoryDirEntry.

Figure 130 RepositoryDirEntry and RepositoryNodeKind

The RepositoryDirEntry class holds several information of a repository entry. For instance the

URL and the revision number of the entry. Furthermore, RepositoryNodeKinds are defined for

repository entries. They can be of type File, Dir, Model as well as unspecified (kinds like None,

Unkown). Please note, that NONE has been moved with release 1.9.9.

ModelBus User Guide

139

By using this information we are now able to browse through the repository. This is shown in

the writeEntries method displayed in the previous table.

20.2 Microsoft .NET based Repository Browsing

In order to use the core lib with the .NET framework, IKVM has been used to compile the

JAVA core lib into .NET libraries. This is an example of how the core lib can be used in a C#

application to browse through the repository.

Step 1 - First of all the IKVM libraries are required. Version 0.46.0.1 has been used to

translate the core lib. You can download IKVM at http://sourceforge.net/projects/ikvm/files/.

 Please note that IKBM release 0.46.0.1 is the last release that supports Java 1.6.

Step 2 –Download the ModelBus .NET core lib from the release website

http://www.modelbus.org/en/modelbusdownloads.html.

Step 3 - Create a Visual Studio project, e.g. a Console Application and reference the following

.NET-libraries:

 From the .NET CoreLib:

o org.modelbus.core.lib.dll

o org.eclipse.osgi.dll

o org.eclipse.equinox.dll

o org.eclipse.emf.dll

o org.eclipse.core.dll

 From the IKVM-0.44.0.5/bin

o IKVM.OpenJDK.Core.dll

o IKVM.OpenJDK.XML.Bind.dll

o IKVM.OpenJDK.XML.WebServices.dll

Step 3 – With these libraries, you are enabled to write ModelBus applications in C#. In this

example, a program similar to the above Java example is realized in C#:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Diagnostics;

using org.eclipse.emf.ecore.util;
using org.modelbus.dosgi.repository.descriptor;
using org.modelbus.core.lib;

http://sourceforge.net/projects/ikvm/files/
http://www.modelbus.org/en/modelbusdownloads.html

 ModelBus User Guide

140

namespace IKVM.corelib.example
{
 class CoreLibExample
 {
 static void Main(string[] args)
 {
 IRepositoryHelper repositoryHelper =
 ModelBusCoreLib.getRepositoryHelper();
 Session session = createSession("Admin", "ModelBus");

 writeEntries(repositoryHelper.getRoot(session), repositoryHelper,
 session, "+");
 }

 private static void writeEntries(RepositoryDirEntry entry,
 IRepositoryHelper helper, Session session, String plus)
 {
 try {

 RepositoryDirEntry[] entries =
 helper.getDirEntries(session,
URI.createURI(entry.getUri()), -1);

 foreach (RepositoryDirEntry child in entries) {
 Debug.WriteLine(plus + " " + child.getName() +
 " (" + child.getRevision() + ")");

 if (child.getKind().equals(RepositoryNodeKind.DIR))
 {

writeEntries(child, helper, session, plus + "+");
 }
 }
 } catch (java.io.IOException e) {
 e.printStackTrace();
 }
 }

 public static Session createSession(String username, String password) {

 String sessionId = EcoreUtil.generateUUID();
 session.setId(sessionId);

 Property propertyUserName = new Property();
 propertyUserName.setKey("username");
 propertyUserName.setValue(username);

 Property propertyPassword = new Property();
 propertyPassword.setKey("password");
 propertyPassword.setValue(password);

 session.getProperties().add(propertyUserName);
 session.getProperties().add(propertyPassword);

 return session;
 }

ModelBus User Guide

141

 }
}

Using the IKVM converted Java classes, it is possible to connect to the Modelbus repository

very similar to the Java implementation.

20.3 Model Fragmentation

This example illustrates the usage of the ModelBus core lib to split models into fragments.

Step 1 – see section 20.1

Step 2 – Create a Java class (see section 20.1)

public class FragmentationExample {

 public static IRepositoryHelper repositoryHelper =

 ModelBusCoreLib.getRepositoryHelper();

 public static Session session = new Session();

}

Step 3 – initialize the session (see section 20.1)

Step 4 – use the ModelBus core lib API

public static void main(String[] args) {

 initSession();

 ResourceSet resourceSet = new ResourceSetImpl();

 resourceSet.getPackageRegistry().put(UMLPackage.eNS_URI,

 UMLPackage.eINSTANCE);

 resourceSet.getResourceFactoryRegistry()

 .getExtensionToFactoryMap().put("*",

 new XMIResourceFactoryImpl());

 URI uri = URI.createFileURI("D:/…/my.uml");

 Resource resource = resourceSet.getResource(uri, true);

 EObject rootElement = resource.getContents().get(0);

 EObject fragmentElement = rootElement.eContents().get(0);

 URI fragmentUri = EcoreUtil.getURI(fragmentElement);

 try {

 resource.setURI(URI.createURI(

 "http://FragmentTest/my.uml"));

 repositoryHelper.checkInModel(session, resource, uri,

 Collections.EMPTY_MAP, "logMessage");

 ModelBus User Guide

142

 String fragmentFileLocation =

 "http://FragmentTest/myFragment.uml";

 repositoryHelper.control(session, fragmentUri,

 fragmentFileLocation, "logMessage");

 repositoryHelper.checkOutModel(session, resource,

 Collections.EMPTY_MAP);

 Resource fragmentResource =

 resourceSet.createResource(URI.createURI(

 fragmentFileLocation));

 repositoryHelper.checkOutModel(session,

 fragmentResource,Collections.EMPTY_MAP);

 // change the controlled fragment here

 repositoryHelper.checkInModel(session, fragmentResource,

 Collections.EMPTY_MAP, "logMessage");

 repositoryHelper.uncontrol(session,

 URI.createURI(fragmentFileLocation),

 "logMessage");

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

After the session has been initialized you have to create a ResourceSet and put the

UMLPackage to the PackageRegistry. Then you load the model you want to split into

fragments. We call the getContents() method on the resource to get the root element of our

model. Afterwards you get the “fragmentElement” from the “rootElement” by calling

eContents(). This element will be our fragment which we want to control. First you have to

check the original model into the repository and then you can call the method control() on

the “repositoryHelper”. After this you can check out the two models from the repository,

modify the fragment, check in the changed fragment and uncontrol the fragment again.

20.4 Dependencies Support

This example shows how to use the ModelBus core lib API to enable dependencies support

for models and to get the dependencies of models or model elements.

Step 1 – see section 20.1

Step 2 – Create a java class e.g. DependenciesExample (see section 20.1)

ModelBus User Guide

143

public class DependenciesExample {

 public static IRepositoryHelper repositoryHelper =

 ModelBusCoreLib.getRepositoryHelper();

 public static Session session = new Session();

}

Step 3 – initialize the session (see section 20.1)

Step 4 – use the ModelBus core lib API

public static void main(String[] args) {

 initSession();

 repositoryHelper.setEnableDependencies(true);

 repositoryHelper.setModelExtensions(new String[]{"uml"});

 ResourceSet resourceSet = new ResourceSetImpl();

 resourceSet.getPackageRegistry().put(UMLPackage.eNS_URI,

 UMLPackage.eINSTANCE);

 resourceSet.getResourceFactoryRegistry()

 .getExtensionToFactoryMap()

 .put("*", new XMIResourceFactoryImpl());

 URI uri = URI.createFileURI("D:/…/my.uml");

 Resource resource = resourceSet.getResource(uri, true);

 try {

 resource.setURI(

 URI.createURI("http://DependenciesTest/my.uml"));

 repositoryHelper.checkInModel(session, resource, uri,

 Collections.EMPTY_MAP,”logMessage”);

 IncomingReferencesInfo[] referencesInfos =

 repositoryHelper.getIncomingReferences(session,

 URI.createURI(

 "http://DependenciesTest/my2.uml"));

 for (IncomingReferencesInfo referencesInfo :

 referencesInfos) {

 // the uri of the referencing object

 String referencingObjectUri = referencesInfo

 .getReferencingObjectUri();

 // the uri of the type of the referencing object

 String objectTypeUri = referencesInfo

 .getObjectTypeUri();

 ModelBus User Guide

144

 // the name of the referencing object

 String objectName = referencesInfo.getObjectName();

 System.out.println("referencing Uri: " +

 referencingObjectUri + " type uri: " +

 objectTypeUri + " object name: " +

 objectName);

 }

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

After the initialization of the session you have to enable dependency management and to

specify the model extensions to use for the dependency analysis. In this example, the

modelExtensions parameter is set to a new array of strings with the one element “uml”. Then

you load your model (my.uml) which should reference some other models (here my2.uml)

beside the UML meta-model and call the checkinModel operation on the repositoryHelper. All

referenced models and meta-models are committed to the repository. Afterwards you obtain

the incoming references of a referenced model (my2.uml) by invoking the operation

getIncomingReferences(). The return value of this method is from type

IncomingReferencesInfo[]. The IncomingReferencesInfo object holds the URI of the

referencing model or model element, the URI of the model element’s type and the name of

the referencing model element.

20.5 Notification Listener

The following example describes how to receive notifications from the model repository on

client side.

Step 1 – Create an Eclipse Plug-in Project and add the plug-ins org.modelbus.core.lib.common

and org.modelbus.cxf.dosgi.startup to its required plug-ins.

ModelBus User Guide

145

Figure 131 Required Plug-ins Configuration

Step 2 - Implement the INotificationListener interface

In order to receive notifications from the repository we have to implement the

INotificationListener interface first. The interface is defined in the package

org.modelbus.core.lib.notification of the ModelBus core lib.

public interface INotificationListener {

 public void notification(String url, String mode, String username,

String sessionID);

 public void commitChangeModelNotification(String modelUri,

 String messageID, String changeModelContent);

}

The interface defines two methods. We have to implement the method notification, whereas

the parameter mode specifies the kind of notification to receive, for instance delete, create

or update. For this example the interface implementation is named MyNotificationListener.

public class MyNotificationListener implements INotificationListener {

 @Override

 public void notification(String model, String mode, String username,

String sessionID) {

 System.out.println("User " + username + " " + mode + "d the

model " + model);

 }

 @Override

 public void commitChangeModelNotification(String modelUri,

 String messageID, String changeModelContent) {

 //do nothing

 }

}

 ModelBus User Guide

146

Step 3 - Register NotificationListener

After implementing our NotificationListener we have to register it to ModelBus. Therefore,

we need the NotificationListenerManager that helps us to manage the notification reception.

The class is also contained in the notification package of the ModelBus core lib.

public static void main(String[] args) {

 String repLocation = System.getenv("MODELBUS_REPOSITORY_LOCATION");

 NotificationListenerManager notificationListenerManager = null;

 MyNotificationListener myNotificationListener = null;

 try {

 // create the NotificationListenerManager with the location of

 the Modelbus repository

 notificationListenerManager = NotificationListenerManager

 .getNotificationListenerManager(repLocation);

 // your NotificationListener

 myNotificationListener = new MyNotificationListener();

 // add your NotificationListener

 notificationListenerManager.addNotificationListener(

 myNotificationListener);

 } catch (Exception e) {

 e.printStackTrace();

 }

}

First, we have to set the URL of the repository to the NotificationListenerManager in order to

create an instance of this class. Then we can add our implementation of the

INotificationListener to this manager class. After that the method notification of our listener

will be executed whenever an event is sent via the ModelBus infrastructure.

If the listening is no longer required we can deregister our notification listener from the set

of managed listeners by calling the remove method of the NotificationListenerManager class.

 // remove your NotificationListener

 notificationListenerManager.removeNotificationListener(

 myNotificationListener);

20.6 How to write an Adapter

ModelBus User Guide

147

 Please note that it is currently not possible to run ModelBus adapters using HTTPS.

To be able to write an adapter, you must first install a ModelBus client as described in section

4. To be able to run it, you should also have a server installed and running as described in

section 3. The system variables MODELBUS_SVN_REPOSITORY_LOCATION and

MODELBUS_REPOSITORY_LOCATION must be defined (see and). Since ModelBus Release

1.9.7 you can alternatively define a system variable named MODELBUS_ROOT pointing to the

ModelBus installation folder containing the Modelbus configuration model (see chapter 3.1.1

for more detailed information).

The interaction patterns of ModelBus and the architecture of a provider and a consumer

have been described in sections 19.3, 19.4 and 19.5. It is also described that the interaction

between provider and consumer is realized via Apache CXF DOSGI. Nevertheless, a WSDL will

be provided and may be used directly.

The following tutorial describes the basics of writing those ModelBus provider/consumer

adapters using a simple hello World example to start with. It consists of three projects that

need to be created:

 interface

 provider

 consumer

20.6.1 1st Project – Interface

Step 1 - You need to create a new Eclipse Plug-in Project (see Figure 132)

 ModelBus User Guide

148

Figure 132 Create descriptor project

Open the New Project Dialog via File  New  Project. Select Plug-in project and click Next.

Assign a project name, e.g. demo.tutorialService.descriptor. In the second dialog make sure

you do not generate an activator. Press Finish and confirm to switch the perspective.

Step 2 - Create a new Java package with the same name as the project, e.g.

demo.tutorialService.descriptor by clicking File  New  Package. It will automatically be

created in the src folder of the project.

Step 3 - Within the package create an interface (in the context menu of the package select

New -> Interface). Assign a name for the interface, e.g. ITutorialService (see Figure 133).

ModelBus User Guide

149

Figure 133 Create an Interface

The following source code will be generated automatically:

package demo.tutorialService.descriptor;
 public interface ITutorialService {
 }

Now you can specify some methods for the interface created above. If you use this code

directly, the WSDL generated will not have meaningful naming, e.g. the arguments of the

operations will afterwards only be named arg0, arg1, … which is not very useful. For this

reason, some additional annotations have to be added to the interface code.

Step 4 – Declare the interface as web service and define a method returning a string with one

parameter of type string. This is done by manually inserting the additional code as shown

below:

package demo.tutorialService.descriptor;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;

@WebService(targetNamespace = "http://demo.tutorialservice/", name = "TutorialService")

 ModelBus User Guide

150

public interface ITutorialService {

 @WebMethod(action = "http://demo.tutorialservice/myOperation")
 @WebResult(name = "returnValue")
 public String myOperation(
 @WebParam(name="dummyString",
 targetNamespace="http://demo.tutorialservice/TutorialService")
 String dummyString
);
}

When declaring the Interface as a web service, you have to assign a targetNamespace

("http://demo.tutorialservice/") and a name for the web service

("TutorialService"). The method myOperation will be exposed as a web service

operation and therefore declared as WebMethod. Define WebResult to customize the

mapping of the return value to a named WSDL part and XML element. Define WebParam to

customize the mapping of an individual parameter to a Web Service message part and XML

element.

As a result, we will have an interface with the operation myOperation with one parameter

dummyString and a return value. The naming in the java code and the automatically

generated WSDL will be the same.

Step 5 – Expose package demo.tutorialService.descriptor to clients (see Figure 134).

Figure 134 Expose Package demo.tutorialService.descriptor to Clients

Open the meta information of the project (MANIFEST.MF). Open tab Runtime and add the

package to Exported Packages.

ModelBus User Guide

151

20.6.2 Second Project – Provider

 Since ModelBus release 1.9.6 you can use the “ModelBus Service from Existing
Interface” wizard to generate a provider and a consumer according to your service interface.
Please note that this feature is still in development.

Step 1 - You need to create a new Eclipse Plug-in Project (see Figure 135).

Figure 135 Create plug-in project for provider

Open the New Project Dialog via File  New  Project. Select Plug-in project and click Next.

Assign a project name, e.g. demo.tutorialService.provider. In the second dialog make sure you

do not generate an activator.

Step 2 – Create a new package with the same name as the project in the src folder of it, e.g.

demo.tutorialService.provider.

Step 3 – Correct dependencies and specify the plug-ins required (see Figure 136).

 ModelBus User Guide

152

Figure 136 Provider dependencies

Open the meta information of the project (MANIFEST.MF) of the provider project. Open the

tab Dependencies (shown at the bottom) and add the following plug-ins:

org.modelbus.dosgi.services, org.modelbus.core.lib.dosgi, org.eclipse.core.runtime and the

descriptor you implemented in the first project demo.tutorialService.descriptor. Just press

the add button and enter the names in the select a Plug-in field. Don’t forget the descriptor

plug-in.

The Provider should provide the service. Thus it needs to implement the interface from the

descriptor.

Step 4 – Create a new Java class TutorialServiceImpl that implements the interface

ITutorialService you defined in the first project (see Figure 137).

ModelBus User Guide

153

Figure 137 Implement Interface

Extend the source code for the class to implement the interface ITutorialService as follows:

package demo.tutorialService.provider;

import demo.tutorialService.descriptor.ITutorialService;

public class TutorialServiceImpl implements ITutorialService {

 @Override
 public String myOperation(String dummyString) {
 return dummyString+" World";
 }
}

When a class implements ITutorialService it has to implement the inherited abstract method

myOperation. In this example, it returns the argument dummyString and appends “ World” at

the end of the string.

Step 5 – Create a second class Activator in the package demo.tutorialService.provider (see

Figure 138).

 ModelBus User Guide

154

Figure 138 Class Activator

Step 6 – The class needs to inherit from class AbstractModelBusAdapterProviderActivator.

package demo.tutorialService.provider;

import org.modelbus.ModelBusServiceConfiguration;
import org.modelbus.core.lib.dosgi.AbstractModelBusAdapterProviderActivator;
import org.modelbus.core.lib.dosgi.RepositoryHelper;
import demo.tutorialService.descriptor.ITutorialService;

public class Activator extends AbstractModelBusAdapterProviderActivator {

 @Override
 protected Object createServiceInstance() {
 return new TutorialServiceImpl();
 }

 @Override
 protected void configure(ModelBusServiceConfiguration config) {
 config.setServiceName("ModelBus demo service");
 }

 @Override
 public Class getServiceInterface() {

ModelBus User Guide

155

 return ITutorialService.class;
 }
}

If you extend AbstractModelBusAdapterProviderActivator several methods have to be

implemented. For this tutorial three methods need to return a proper value. Rewrite

createServiceInstance() to return a new instance of the class TutorialServiceImpl you

implemented in Step 4. Further change getServiceInterface() to return the interface class.

In addition, the service name has to be provided to the ModelBusServiceConfiguration using

the argument passed to the configure() method. In this method, you can also specify the

location where the service should be accessible. By default, ModelBus will publish the service

at port 9090 using the interface name to determine the web context (in this example the

location would be http://localhost:9090/itutorialservice). The following listing shows some

examples to alter the default behavior:

package demo.tutorialService.provider;

import org.modelbus.ModelBusServiceConfiguration;
import org.modelbus.core.lib.dosgi.AbstractModelBusAdapterProviderActivator;
import org.modelbus.core.lib.dosgi.RepositoryHelper;
import demo.tutorialService.descriptor.ITutorialService;

public class Activator extends AbstractModelBusAdapterProviderActivator {

 (…)

 @Override
 protected void configure(ModelBusServiceConfiguration config) {
 config.setServiceName("ModelBus demo service");

 //explicitly set another service location; manual port selection

 config.setOption(ModelBusServiceConfiguration.OPTION_SERVICE_ADDRESS,
 "http://localhost:9200/tutorial");

 //or: set service context only; automatic port selection
 config.setOption(ModelBusServiceConfiguration.OPTION_OSGI_HTTP_
 SERVICE_CONTEXT, "/tutorial");

 }

 (…)
}

 ModelBus User Guide

156

When setting the configuration option ModelBusServiceConfiguration.

OPTION_OSGI_HTTP_SERVICE_CONTEXT instead of explicitly defining a particular location,

the ModelBus server will start up an embedded HTTP server to host the ModelBus services

deployed in the same server instance. In this case, your service will be deployed at the next

free port available above the ModelBus server port using the specified service context. For

example, if you add the ModelBusServiceConfiguration. OPTION_OSGI_HTTP_SERVICE_

CONTEXT option with a value like “/tutorial” to the configuration and if you have the

ModelBus server running at port 8080, your service would be accessible via

http://localhost:8081/tutorial if the port 8081 is free.

 Please note: When setting the service port explicitly, i.e. when defining the service
location using the ModelBusServiceConfiguration.OPTION_SERVICE_ADDRESS
configuration option, please use another port than the ModelBus server is running at.
Otherwise this would not necessarily cause an exception, but may make the service
unusable for clients.

Step 7 – The class Activator needs to be set as activator in the Manifest of the provider

project. Open the meta information (MANIFEST.MF). Open up the tab Overview and set

Activator to demo.tutorialService.provider.Activator (see Figure 139).

Figure 139 Set the Class Activator as Activator for the Plug-in

Step 8 – Create a new run configuration for the project (see Figure 140).

http://localhost:8081/tutorial

ModelBus User Guide

157

Figure 140 Create a new Run Configuration for the Provider

Click on Run  Run Configurations to open up a new dialog.

Select Eclipse Application.

1. Create a new launch configuration.

2. Assign a proper name, e.g. TutorialServiceProvider.

3. Correct location to ${workspace_loc}/../runtime-TutorialServiceProvider.

Go to tab Arguments and append -console –consolelog to program arguments (see Figure

141).

Figure 141 Append Program Arguments

 ModelBus User Guide

158

Go to tab Plug-ins and specify the plug-ins the project has to be launched with (see Figure

142 – this figure does not show the exact names of the plugins to be selected. It is only a

schematic example. For a detailed description of the steps see the text following the figure.

Figure 142 Correct Plug-ins needed by the Project

Follow these steps:

1. Set Launch with to plug-ins selected below only.

2. Click Deselect All.

3. Select the following plug-ins:

a. demo.tutorialService.provider

b. org.modelbus.cxf.dosgi.startup

and set the auto-start value of the demo.tutorialService.provider Plug-in to true

4. Very important: click Add Required Plug-ins (you must have removed any filter if you

used them)

 1

2

3 3

4

5

ModelBus User Guide

159

5. Click Apply

6. Click Run

 Please note: When using the –console program argument in Eclipse Juno, please make
sure to also add the bundles org.eclipse.equinox.console, org.apache.felix.gogo.runtime
and org.apache.felix.gogo.shell to the run configuration.

A second Eclipse should start. In the console of the original Eclipse a lot of output is

generated (see Figure 143).

Figure 143 Console Output after Starting Provider

 ModelBus User Guide

160

Scroll in the direction of the top of the output. At the beginning there should be some lines in

black and state a URL (see Figure 143). If they are not there but somewhere in the middle:

did you start the ModelBus server and is it still running? It is also possible that the black lines

have been scrolled of the console window. In this case you could increase its capacity in its

preferences (see Figure 144) – select Preferences in the context menu of the console and

remove the selection at Limit console output or increase its size. Once the provider started,

you should be able to get a response by opening this URL in a web browser with the query

string “?wsdl” added at the end, e.g. http://localhost:9090/itutorialservice?wsdl.

Figure 144 Modify the Console Buffer Capacity

If you are able to access the URL and see some XML output (the WSDL of the provider -

similar to Figure 145) the provider has started up correctly. You can continue and start

developing the consumer. If you take some time you will discover all the names in the WSDL

we defined in the interface (see section 20.6.1 Step 4).

http://localhost:9090/itutorialservice?wsdl

ModelBus User Guide

161

Figure 145 The Provider WSDL

 ModelBus User Guide

162

20.6.3 Third Project – Consumer

 Since ModelBus release 1.9.6 you can use the “ModelBus Service from Existing
Interface” wizard to generate a provider and a consumer according to your service interface.
Please note that this feature is still in beta phase.

Step 1 – Create a new Eclipse Plug-in Project demo.tutorialService.consumer similar to step 1

in the provider adapter section and set its dependencies as shown in Figure 146.

Figure 146 The Consumer Project and its Dependencies

Step 2 – Add a Java package named demo.tutorialService.consumer to the src folder.

Step 3 – Create a Java class Activator in demo.tutorialService.consumer similar to step 5 in

the provider project (second project).

Replace the generated Activator code with the following (if you choose a different naming

you must probably adapt it):

package demo.tutorialService.consumer;

import org.modelbus.core.lib.IRepositoryHelper;
import org.modelbus.core.lib.configuration.ModelBusServiceConfiguration;
import org.modelbus.core.lib.dosgi.api.AbstractModelBusAdapterConsumerActivator;
import demo.tutorialservice.descriptor.ITutorialService;

public class Activator extends AbstractModelBusAdapterConsumerActivator {
 private static ITutorialService myservice;

 public Activator() {

ModelBus User Guide

163

 super();
 }

 @Override
 protected void serviceRegistered(Object arg0) {
 myservice = (ITutorialService) arg0;
 String result = myservice.myOperation("Hello");
 System.out.println("Result: "+result);
 }

 @Override
 protected void configure(ModelBusServiceConfiguration arg0) {
 // TODO Auto-generated method stub
 }

 @SuppressWarnings("rawtypes")
 @Override
 public Class getServiceInterface() {
 return ITutorialService.class;
 }
}

Step 4 – Add “OSGI-INF” information

 Create a folder OSGI-INF in the root folder of the consumer project

 Create a folder remote-service in it

 Create a xml-file remote-services.xml in it --- mind the additional “s”

Open the xml-file with Text Editor (or switch to the source tab) and enter the following text

(possibly to be adapted in the highlighted lines):

<?xml version="1.0" encoding="UTF-8"?>
<service-descriptions xmlns="http://www.osgi.org/xmlns/sd/v1.0.0">
 <service-description>
 <provide interface="demo.tutorialService.descriptor.ITutorialService" />
 <property name="service.exported.interfaces">*</property>
 <property name="service.exported.configs">org.apache.cxf.ws</property>
 <property name="org.apache.cxf.ws.address">http://localhost:9090/itutorialservice</property>
 <property name="org.apache.cxf.ws.frontend">jaxws</property>
 </service-description>
</service-descriptions>

Step 6 – Change MANIFEST.MF

 ModelBus User Guide

164

Include the OSGI-INF directory in the build configuration (see Figure 147).

Figure 147 Include OSGI-INF in the Build Configuration

Therefore, open the meta information of the project (MANIFEST.MF). Open the tab Build and

select the OSGI-INF directory and icons.

In the Overview tab select the Activate this plug-in... and set the activator

(demo.tutorialService.consumer.Activator) (see Figure 148).

ModelBus User Guide

165

Figure 148 Set Activator

Step 7 – Create a new run configuration for the project and name it TutorialServiceConsumer.

Refer to section Second Project – Provider – Step 8 for a detailed description. Be careful

when you correct the plug-ins. The demo.tutorialService.consumer plug-in needs to be

selected with Auto-start set to true. In addition, the org.modelbus.cxf.dosgi.startup bundle

has to be added to the run configuration. Please remember to add the required plug-ins to

the configuration by clicking the corresponding button in the dialog.

 To ensure that the consumer plug-in is able to find the service implementation, it is
required to be started at a higher start level than the org.modelbus.cxf.dosgi.startup plug-in.
Since the default start level in Eclipse is equal to 4, a start level >= 5 for the consumer bundle
is appropriate.

Step 8 – Run the consumer by executing its run configuration (do not forget to start the

server and run the provider before).

The execution of the testservice method will result in a console output of the Eclipse

workbench that runs the provider (see Figure 149).

 ModelBus User Guide

166

Figure 149 Consumer Results

20.6.4 Relations between the parts of the adapter realizations

How are all the previously developed projects (20.6.1 to 20.6.3) related to each other?

This should be sketched by following the flow in our small example.

An instance of the Activator class is executed whenever the consumer is started. It extends

the AbstractModelBusAdapterConsumerActivator which will realize the consumer side of the

ModelBus interaction pattern (see section 19.3).

The Activator Code:

package demo.tutorialService.consumer;

import org.modelbus.core.lib.IRepositoryHelper;
import org.modelbus.core.lib.configuration.ModelBusServiceConfiguration;
import org.modelbus.core.lib.dosgi.api.AbstractModelBusAdapterConsumerActivator;
import demo.tutorialservice.descriptor.ITutorialService;

public class Activator extends AbstractModelBusAdapterConsumerActivator {
 private static ITutorialService myservice;

 public Activator() {
 super();
 }

 @Override
 protected void serviceRegistered(Object arg0) {
 myservice = (ITutorialService) arg0;
 String result = myservice.myOperation("Hello");
 System.out.println("Result: "+result);
 }

ModelBus User Guide

167

 @Override
 protected void configure(ModelBusServiceConfiguration arg0) {
 // TODO Auto-generated method stub
 }

 @SuppressWarnings("rawtypes")
 @Override
 protected Class getServiceInterface() {
 return ITutorialService.class;
 }
}

The highlighted operations (light grey) are the most important in our example – the

RepositoryHelper will not be used here but is of importance when using the repository:

 getServiceInterface() is used to determine which interface a service has to implement

to be used by the consumer. Thus, in this example, the method returns the service

interface ITutorialService.

 Within serviceRegistered(Object arg0) a service instance for the corresponding

interface will be populated. In this example, the service instance is stored in the

myservice variable. The myOperation method of the service will be invoked using the

actual parameter “Hello”. Afterwards, the result is printed out to System.out (shown

in the console window).

The myservice.myOperation method mentioned above is the one we realized within the

provider (see section 20.6.2). It has been described within the Interface (see section 20.6.1)

as a WSDL and exported. The communication between the consumer and provider based on

the ModelBus Interaction Pattern (see section 19.3) is mostly realized through the

AbstractModelBusAdapterConsumerActivator and the

AbstractModelBusAdapterProviderActivator interfaces delivered with the ModelBus.

Next have a look to the provider side. The coding needed for the example has been done in

section 20.6.2 and was quite simple.

The implementation of the service operation was quite simple:

package demo.tutorialService.provider;
import demo.tutorialService.descriptor.ITutorialService;
public class TutorialServiceImpl implements ITutorialService {

 ModelBus User Guide

168

 @Override
 public String myOperation(String dummyString) {

return dummyString+" World";
 }
}

The activator for the provider extends the AbstractModelBusAdapterProviderActivator and

implements two methods for our needs (both highlighted in the code below):

 creation of a service instance and

 provisioning of the service interface.

These will be used whenever a service instance or its service interface is needed.

package demo.tutorialService.provider;

import org.modelbus.ModelBusServiceConfiguration;
import org.modelbus.core.lib.dosgi.AbstractModelBusAdapterProviderActivator;
import org.modelbus.core.lib.dosgi.RepositoryHelper;
import demo.tutorialService.descriptor.ITutorialService;

public class Activator extends AbstractModelBusAdapterProviderActivator {

 @Override
 protected Object createServiceInstance() {

 return new TutorialServiceImpl();
}

 @Override
 protected void configure(ModelBusServiceConfiguration arg0) {

 config.setServiceName("ModelBus demo service");
 }

 @Override
 protected Class getServiceInterface() {

 return ITutorialService.class;
 }
}

ModelBus User Guide

169

 ModelBus User Guide

170

21. ModelBus Exception Specifications

Within in the ModelBus Core Lib several exception types are defined as follows:

RepositoryException

The RepositoryExecption is an abstract exception and has an attribute description whose

value should contain a short report why an exception has been thrown. Every further

exception in this specification is derived from RepositoryException.

RepositoryRuntimeException

The repository throws a RepositoryRuntimeException whenever an error occurs in the

runtime of the repository or no other repository exception of this specification is adequate

and relevant in order to describe the defect correctly.

LockedException

The LockedExecption will be thrown when a user performs an action on a locked artifact and

the action could change the model.

InvalidRevisionException

When an action is about to perform on an unresolved version number of a revision the

InvalidRevisionException will be thrown.

RepositoryAuthentificationException

An invalid user authentication, due to an invalid user and password combination, leads to a

RepositoryAuthentificationException. When this exception is thrown the description value

doesn’t contain a report which leads to an invalid parameter (user or password) of a user.

NonExistingResourceException

The NonExistingResourceException is thrown whenever an operation is performed on an

artifact with an unknown URL namespace in the context of the repository.

UnresolvedReferencesException

Todo description

ConstraintViolationException

Todo description

ModelBus User Guide

171

InvaildValueException

Whenever an invalid value is passed as an actual parameter to any ModelBus Core Lib

operation an InvalidValueException will be thrown.

InvalidServiceDescriptionException

The InvalidServiceDescriptionException is thrown, when the data describing a service to be

registered to the repository is not valid.

 ModelBus User Guide

172

22. Trouble Shooting Guide

Problem: When trying to obtain the WSDL of the ModelBus itself or one of its services, the

following exception occurs:

org.apache.cxf.binding.soap.SoapFault: "http://schemas.xmlsoap.org/wsdl/",

the namespace on the "definitions" element, is not a valid SOAP version.

Solution: Please make sure that you do not have added a query string (e.g. “?wsdl”) to the

value for the system variable MODELBUS_REPOSITORY_LOCATION or to the corresponding

location in the configuration model in case of ModelBus release 1.9.7 or higher. If this did

happen, please remove it and restart the ModelBus Server as well as the Team Provider

client and ModelBus adapter and consumer instances.

Problem: ModelBus Server did not start (the first time), bundle is not active

Solution 1: When using a local repository please ensure, that the

MODELBUS_SVN_REPOSITORY_LOCATION environment variable (or the corresponding

location in the configuration model in case of ModelBus release 1.9.7 or higher) is pointing to

an empty directory.

Solution 2: Ensure that the SVNKit libraries are available for the ModelBus server (see

chapter 3).

Solution 3: If you are using the IP address “0.0.0.0” as repository host (repository location),

please make sure that the specified port is not already in use in case of each network

interfaces installed on the machine and that the server has sufficient rights to use the port.

There may also be another configuration problem with one of the network interfaces. Please

ask your administrator in this case.

ModelBus User Guide

173

Appendix B

A more complex Consumer / Provider

Adapter Implementation Example

23. A more complex Consumer / Provider Adapter

The principles of the creation and implementation of a consumer and a provider adapter for

a service based on the ModelBus has been described in section 20.6 with a first simple

example. The principles of the communication in the context of the ModelBus are described

in section 19 in particular the ModelBus Interaction Pattern (see section 19.3), the consumer

/ provider adapter concepts (see section 19.4 & 19.5) and the support offered through the

ModelBus Core Lib (see section 19.6).

Within this section a more complex example for a consumer / provider adapter shall be

shown.

23.1 How to get the example

The example may be downloaded from the ModelBus website (www.modelbus.org). It

consists of four Eclipse projects to be imported:

 org.eclipse.emf.library.example

 org.modelbus.library.example.serviceinterface

 org.modelbus.library.example.service

 org.modelbus.library.example.consumer

The first project contains the Library meta-model. It is based on the well-known Eclipse

library meta-model (see section 23.2.1). The second project provides the interface definition

for the service (see section 23.2.2). The third contains the service provider adapter (see

section 23.2.3) and the last one the consumer adapter (see section 23.2.4).

The service is using the OSLO OCL processor, which is delivered in three JAR files that has to

be copied to the Eclipse plugins folder of the Eclipse where the projects above have been

imported to.

The Eclipse to be used should be a modeling distribution of Eclipse with ModelBus installed

(see section 4).

To execute the adapter example a ModelBus server needs to be installed and running (see

section 3).

The service provider adapter and consumer adapter will be started using a specific Run

Configuration (see Figure 150). Please see also the base description in sections 20.6.2 and

20.6.3).

http://www.modelbus.org/

 ModelBus User Guide

178

Figure 150 Defining the Run Configurations

For this specific example we have to select the following plug-ins:

 for the service provider (LibraryService)

o org.modelbus.library.example.service

o org.modelbus.cxf.dosgi.startup

 for the service consumer (LibraryConsumer):

o org.modelbus.library.example.consumer

o org.modelbus.cxf.dosgi.startup

Please note that the auto start values for both, the provider and the consumer plug-in, are

required to be set to true. In addition, in both cases we have to include all additionally

required plug-ins by using the “Add Required Plug-Ins” button.

 To ensure that the consumer plug-in is able to find the service implementation, it is
required to be started at a higher start level than the org.modelbus.cxf.dosgi.startup plug-in.
Since the default start level in Eclipse is equal to 4, a start level >= 5 for the consumer bundle
is appropriate.

ModelBus User Guide

179

23.2 The Library Service

The library service will allow us to manipulate and check the validity of instances of the

Library meta-model (see section 23.2.1) through the ModelBus. It offers the following

methods through its LibraryService interface (see section 23.2.2):

 to manipulate a library model

o addWriter()

Accepts a library model and a name of a writer and adds a writer with that

name to the library model.

o getWriters()

Accepts a library model and returns all writer instances contained in it (as an

array).

o getLooseWriters()

Accepts a library model and returns all writer instances not associated to any

book contained in the library (as a list).

 to check the validity

o isLibraryModelValid()

Checks the validity of the library model due to some OCL constraints

hardcoded in the server - returns true or false.

The operations implementing the interface will be coded in the provider adapter (see section

23.2.3). The rules / constraints being checked will also be coded as OCL expression in the

provider adapter and checked there.

The operations will be invoked from the consumer adapter through ModelBus. The first

(empty) library model will be created in the consumer adapter and checked in from there to

the ModelBus repository - due to the ModelBus Invocation Pattern - implicitly (see section

23.3.3 for details).

23.2.1 The Library Meta Model

The library service is based on the well-known Eclipse library meta model (see Figure 151). It

describes a “library” as an aggregation of “books” and “writers” which are related by an

“author” relation.

 ModelBus User Guide

180

Figure 151 The Library Meta Model

23.2.2 The Service Interface

The definition of the service interface needed for DOSGi is shown in Figure 152. This

corresponds to the first project within our basic adapter implementation description (see

section 20.6.1). The interface name, the operation names and there corresponding Java

operations are highlighted within the code.

package org.modelbus.library.example.service;

import java.util.List;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;

import library.Library;
import library.Writer;

@WebService(targetNamespace = "http://www.modelbus.org/LibraryService/", name =
"LibraryService")
public interface LibraryService {

 @WebMethod(action = "http://www.modelbus.org/LibraryService/addWriter")
 public void addWriter(
 @WebParam(name = "library", targetNamespace =
"http://www.modelbus.org/LibraryService/")
 Library library,
 @WebParam(name = "name", targetNamespace =

ModelBus User Guide

181

 "http://www.modelbus.org/LibraryService/")
 String name
);

 @WebMethod(action =
 "http://www.modelbus.org/LibraryService/isLibraryModelValid")
 @WebResult(name = "valid", targetNamespace = "")
 public boolean isLibraryModelValid(
 @WebParam(name = "library", targetNamespace =
"http://www.modelbus.org/LibraryService/")
 Library library
);

 @WebMethod(action = "http://www.modelbus.org/LibraryService/getWriters")
 @WebResult(name = "writers", targetNamespace = "")
 public List<Writer> getWriters(
 @WebParam(name = "library", targetNamespace =
 "http://www.modelbus.org/LibraryService/")
 Library library
);

 @WebMethod(action = "http://www.modelbus.org/LibraryService/getLooseWriters")
 @WebResult(name = "looseWriters", targetNamespace = "")
 public List<Writer> getLooseWriters(
 @WebParam(name = "library", targetNamespace =
 "http://www.modelbus.org/LibraryService/")
 Library library
);
}

Figure 152 The Service Interface Definition (DOSGI) (LibraryService.java)

The interface description in the Java interface (DOSGi) results in the WSDL interface

description shown in Figure 153 (excerpt). When the service is running, the WSDL can be

retrieved by using a web browser and invoking http://localhost:9090/libraryservice?wsdl.

http://localhost:9090/libraryservice?wsdl

 ModelBus User Guide

182

Figure 153 The Service Interface as WSDL (Shown in a WSDL editor)

23.2.3 The Service Provider Adapter

For the basic concepts of the service provider adapter see section 20.6.2. In the library

example shown here the service provider adapter (org.modelbus.library.example.service)

consists of four Java classes:

 Activator.java and LibraryServiceImpl.java

comprising the main parts of the service provider adapter

 OsloOCLEvaluator.java and ExceptionLog.java

are the classes that are used by the service adapter for the validation of the model

based on OCL

The complete source code is shown in section 23.3.2 and will be explained here partially.

The activator is as simple as in the example in section 20.6.2. It implements four operations

of the abstract AbstractModelBusAdapterProviderActivator class. Most important is that

getServiceInterface() and createServiceInstance() relate to our LibraryService and its

implementation.

package org.modelbus.library.example.service;

import org.modelbus.ModelBusServiceConfiguration;
import org.modelbus.core.lib.dosgi.AbstractModelBusAdapterProviderActivator;
import org.modelbus.core.lib.dosgi.RepositoryHelper;

public class Activator extends AbstractModelBusAdapterProviderActivator {

ModelBus User Guide

183

…

 @Override
 protected Class getServiceInterface() {
 return LibraryService.class;
 }

 @Override
 protected Object createServiceInstance() {
 return new LibraryServiceImpl();
 }
….

}

The LibraryServerImpl.java is more interesting. It implements all the operations on the model

(surrounded red) and the validation functions (surrounded green) accessible through the

service interface (see Figure 154).

Figure 154 LibraryServiceImpl.java outline

 ModelBus User Guide

184

For the communication with the ModelBus repository we need a session object set up within

the getSession() method:

 private Session getSession(){
 Session session = new Session();
 session.setId(EcoreUtil.generateUUID());
 Property propertyUserName = new Property();
 propertyUserName.setKey("username");
 propertyUserName.setValue("Admin");
 Property propertyPassword = new Property();
 propertyPassword.setKey("password");
 propertyPassword.setValue("ModelBus");

 session.getProperties().add(propertyUserName);
 session.getProperties().add(propertyPassword);

 return session;
 }

The usage of the ModelBus CoreLib API (see section 19.6) shall be illustrated with a look

inside the addWriter() method implementation:

 @Override
 public void addWriter(final Library library, final String name) {
 final Writer writer = LibraryFactory.eINSTANCE.createWriter();
 writer.setName(name);

 library.getWriters().add(writer);

 final Resource res = library.eResource();

 try {

 ModelBusCoreLib.getRepositoryHelper().checkInModel(this.getSession(), res,
res.getURI());
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

It uses the Java code generated (see Figure 155) from the Library meta model (library.ecore)

in the org.eclipse.emf.library.example project (highlighted green) and invokes the

ModelBus User Guide

185

checkInModel() operation of the ModelBus Core Lib (highlighted blue). As one can see, the

original library model will be passed to the operation as a parameter, a new writer model

element will be added and finally the new version of the model will be checked in to the

repository explicitly.

Figure 155 Generate Model Code from the Meta Model

All other LibraryService interface operation implementations make use of OCL to query and

retrieve model elements from the library model or to validate the model.

The use of OCL for querying shall be illustrated using the getLooseWriters() operation:

 private OsloOCLEvaluator evaluator;

 private final static String[] OCL_EXPRESSIONS = new String[]{
 "context Library def: getWriters() : Set(Writer) = self.writers",
 "context Library def: getLooseWriters() : Set(Writer) = self.writers-
>select(w:Writer | w.books->isEmpty())"
 };

 @Override
 public List<Writer> getLooseWriters(Library library) {
 evaluator.addModel(library.eClass().getEPackage());

 this.initializeOCLProcessor();

 final String ocl = "context Library inv: self.getLooseWriters()";

 final List<Object> results = this.evaluator.evaluateExpression(library, ocl);

 return toWriterList(results);
 }

 ModelBus User Guide

186

First it adds the model to the (OCL) evaluator created at the beginning and initializes the OCL

processor (highlighted green). An OCL expression is defined (String ocl) which itself uses a

helper function defined earlier (highlighted blue). The helper function will retrieve all writers

from the model that have no relation to any book. These OCL expressions are evaluated

(highlighted orange) and the result is converted to a list.

Finally a validation function shall be illustrated through the isLibraryModelValid() operation:

@Override
 public boolean isLibraryModelValid(final Library library) {
 evaluator.addModel(library.eClass().getEPackage());

 boolean valid = true;

 //check if library contains writers
 final List<Object> results1 = this.evaluator.evaluateExpression(library,
"context Library inv: self.writers->notEmpty()");

 if((Boolean)results1.get(0) == false){
 System.out.println("Model is invalid: no writers");
 valid = false;
 }

 //check if library contains not more than 3 writers
 final List<Object> results2 = this.evaluator.evaluateExpression(library,
"context Library inv: self.writers->size() < 4");

 if((Boolean)results2.get(0) == false){
 System.out.println("Model is invalid: more than 3 writers");
 valid = false;
 }

 //check if all writer names are not empty
 final List<Object> results3 = this.evaluator.evaluateExpression(library,
"context Library inv: self.writers->select(w:Writer | w.name.size() = 0)->isEmpty()");

 if((Boolean)results3.get(0) == false){
 System.out.println("Model is invalid: empty writer name detected");
 valid = false;
 }

 return valid;

ModelBus User Guide

187

 }

In the first step the library model is added to the evaluator. Then the evaluator is invoked to

evaluate an OCL expression, stated directly in the code (see also the comments in the code

above for the OCL constraints). A negative result of an evaluation is printed to the server

console log.

For details of the complete service provider adapter implementation including the OCL

evaluator helper classes see section 23.3.2.

23.2.4 The Service Consumer Adapter

As last step a closer look into the consumer adapter should be made. The only class

implemented here is the consumer Activator.java in the org.modelbus.library.example.

consumer project.

The consumer Activator.java outline looks quite simple (see Figure 156).

Figure 156 The Consumer Activator.java Outline

The complete code can be inspected in section 23.3.3. The registerRepositoryHelper()

method registers the helper necessary to use the ModelBus Core Lib. The

getServiceInterface() returns the interface to be used to the service - in our case the

LibraryService interface, which is required to access and use it.

All the work the consumer does in the example is implemented in the serviceRegistered()

operation. This should be discussed in more detail now.

An overview of all the code in the operation is given first. It will afterwards be explained

block by block.

@Override
protected void serviceRegistered(Object service) {

 ModelBus User Guide

188

 Session session = new Session();
 session.setId(EcoreUtil.generateUUID());
 Property propertyUserName = new Property();
 propertyUserName.setKey("username");
 propertyUserName.setValue("Admin");
 Property propertyPassword = new Property();
 propertyPassword.setKey("password");
 propertyPassword.setValue("ModelBus");
 session.getProperties().add(propertyUserName);
 session.getProperties().add(propertyPassword);
 final LibraryService libraryService = (LibraryService)service;

 final ResourceSet set = new ResourceSetImpl();
 final Resource res1 =
set.createResource(URI.createURI("http://library.modelbus.org/demo.library"));

 final EPackage p = LibraryPackage.eINSTANCE;

 Library library = LibraryFactory.eINSTANCE.createLibrary();
 library.setName("Demo library");

 res1.getContents().add(library);

 System.out.println("Performing library service: isLibraryModelValid");
 boolean modelValid = libraryService.isLibraryModelValid(library);

 System.out.println("Model valid: " + modelValid);

 final String[] writerNames = new String[] { "Peter York", "Susan Oxford", "Brian
Woodstock", "Catherine Jones", "" };

 for(final String writerName : writerNames){
 System.out.println("Performing library service: addWriter " + writerName);
 libraryService.addWriter(library, writerName);

 //checkout modified library
 final Resource res2 =
set.createResource(URI.createURI("http://library.modelbus.org/demo.library"));

 try {
 ModelBusCoreLib.getRepositoryHelper().checkOutModel(session,
res2);
 } catch (Exception e) {
 throw new RuntimeException(e);

ModelBus User Guide

189

 }

 library = (Library)res2.getContents().get(0);

 for(final Writer writer : library.getWriters()){
 System.out.println(writer);
 }

 System.out.println("Performing library service: getWriters");
 final List<Writer> writers = libraryService.getWriters(library);

 System.out.println("Writers:");
 System.out.println("========");

 for(final Writer currentWriter : writers){
 System.out.println(currentWriter.getName());
 }

 System.out.println("Performing library service: isLibraryModelValid");
 modelValid = libraryService.isLibraryModelValid(library);

 System.out.println("Model valid: " + modelValid);
 }
}

The first block defines and sets up the information for the session to be used by the

ModelBus Core Lib operations (see section 19.6) afterwards:

@Override
protected void serviceRegistered(Object service) {
 Session session = new Session();
 session.setId(EcoreUtil.generateUUID());
 Property propertyUserName = new Property();
 propertyUserName.setKey("username");
 propertyUserName.setValue("Admin");
 Property propertyPassword = new Property();
 propertyPassword.setKey("password");
 propertyPassword.setValue("ModelBus");
 session.getProperties().add(propertyUserName);
 session.getProperties().add(propertyPassword);

 ModelBus User Guide

190

Within the next block access to the Library Service is provided and a resource set with one

specific resource (res1) is created. The URI of this resource is of importance later on. An

empty library model named “Demo Library” is created and added to the resource (res1).

 final LibraryService libraryService = (LibraryService)service;

 final ResourceSet set = new ResourceSetImpl();
 final Resource res1 =
set.createResource(URI.createURI("http://library.modelbus.org/demo.library"));

 final EPackage p = LibraryPackage.eINSTANCE;

 Library library = LibraryFactory.eINSTANCE.createLibrary();
 library.setName("Demo library");

 res1.getContents().add(library);

The next block is quite short but very important with concern to the ModelBus and the

ModelBus repository:

System.out.println("Performing library service: isLibraryModelValid");
 boolean modelValid = libraryService.isLibraryModelValid(library);

 System.out.println("Model valid: " + modelValid);

It checks the validity of the library model we created so far by invoking the

isLibraryModelValid() operation. This is the first use of the Library Service through the

ModelBus. No explicit check-in of the library model took place so it is not stored in the

repository up to now. At this moment the ModelBus Interaction Pattern (see section 19.3) is

of importance.

Whenever an element of type EObject, IModelBusDataSource, Resource or an array or

collection of elements of those types is given (as input or return) of an operation signature

invoked as a service operation through ModelBus the “ModelBus invocation controller” gets

into action.

At the invocation side the respective objects are checked into the repository and an URI is

returned for it (reference to the object in the repository). The object in the invoked operation

is replaced by the URI and the request passed to the service. At service side the referencing

URI is used to check-out the original object again and replace the URI automatically by the

original objects from the invocation. The checked in object is kept in the repository.

ModelBus User Guide

191

How does the invocation controller create an URI for the object checked in implicitly?

In our specific case we have added the library used as the parameter passed to a resource

(res1) in a resource set. For this resource an URI has been created explicitly. This URI will be

used for the implicit check-in.

The next block is a loop. Its contained code (highlighted light blue) is executed for every

writer name defined in the array at the top:

final String[] writerNames = new String[] { "Peter York", "Susan Oxford", "Brian Woodstock",
"Catherine Jones", "" };

 for(final String writerName : writerNames){
 System.out.println("Performing library service: addWriter " + writerName);
 libraryService.addWriter(library, writerName);

 //checkout modified library
 final Resource res2 =
set.createResource(URI.createURI("http://library.modelbus.org/demo.library"));

 try {
 ModelBusCoreLib.getRepositoryHelper().checkOutModel(session,
res2);
 } catch (Exception e) {
 throw new RuntimeException(e);
 }

 library = (Library)res2.getContents().get(0);

 for(final Writer writer : library.getWriters()){
 System.out.println(writer);
 }

 System.out.println("Performing library service: getWriters");
 final List<Writer> writers = libraryService.getWriters(library);

 System.out.println("Writers:");
 System.out.println("========");

 for(final Writer currentWriter : writers){
 System.out.println(currentWriter.getName());
 }

 System.out.println("Performing library service: isLibraryModelValid");

 ModelBus User Guide

192

 modelValid = libraryService.isLibraryModelValid(library);

 System.out.println("Model valid: " + modelValid);
 }

For the ease of understanding the inner block of the loop shall be partitioned into blocks and

explained block by block. The partitioning shall be done as follows:

final String[] writerNames = new String[] { "Peter York", "Susan Oxford", "Brian Woodstock",
"Catherine Jones", "" };

 for(final String writerName : writerNames){
 System.out.println("Performing library service: addWriter " + writerName);
 libraryService.addWriter(library, writerName);

 //checkout modified library
 final Resource res2 =
set.createResource(URI.createURI("http://library.modelbus.org/demo.library"));

 try {
 ModelBusCoreLib.getRepositoryHelper().checkOutModel(session,
res2);
 } catch (Exception e) {
 throw new RuntimeException(e);
 }

 library = (Library)res2.getContents().get(0);

 for(final Writer writer : library.getWriters()){
 System.out.println(writer);
 }

 System.out.println("Performing library service: getWriters");
 final List<Writer> writers = libraryService.getWriters(library);

 System.out.println("Writers:");
 System.out.println("========");

 for(final Writer currentWriter : writers){
 System.out.println(currentWriter.getName());
 }

ModelBus User Guide

193

 System.out.println("Performing library service: isLibraryModelValid");
 modelValid = libraryService.isLibraryModelValid(library);

 System.out.println("Model valid: " + modelValid);
 }

The first block in the loop invokes the addWriter() operation of the library service:

System.out.println("Performing library service: addWriter " + writerName);
 libraryService.addWriter(library, writerName);

For the first time in the loop we will start with the empty library model added to resource

res1. The ModelBus Invocation Pattern will cause it to be checked in again but with the same

URI of res1 but as a new head version. The Library Service operation implementation of

addWriter() will add the writer and will check the new version of the model into the

repository using the same URI as one can see from the server side code (complete code see

section 23.3.2):

 @Override
 public void addWriter(final Library library, final String name) {
 final Writer writer = LibraryFactory.eINSTANCE.createWriter();
 writer.setName(name);

 library.getWriters().add(writer);

 final Resource res = library.eResource();

 try {

 ModelBusCoreLib.getRepositoryHelper().checkInModel(this.getSession(), res,
res.getURI());
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

Now the model has been changed. To continue at the consumer side we have to explicitly

check it out there since we did not pass it back as a return parameter. This is done in the

following code block:

 //checkout modified library

 ModelBus User Guide

194

 final Resource res2 =
set.createResource(URI.createURI("http://library.modelbus.org/demo.library"));

 try {
 ModelBusCoreLib.getRepositoryHelper()..checkOutModel(session,
res2);
 } catch (Exception e) {
 throw new RuntimeException(e);
 }

 library = (Library)res2.getContents().get(0);

 for(final Writer writer : library.getWriters()){
 System.out.println(writer);
 }

At the beginning we create a new resource (res2) with the same URI to access the same

repository object but the newest version. The library model is returned within the resource

res2 and we assign it to the “library” object we have added to resource res1. Finally, we print

all writers we got with the new library model -- at the first time it should just be “Peter York”.

This is done from the local library model instance.

Then, within the next block, the writers will be retrieved from the model using the service

operations – first as a list and then as an array.

 System.out.println("Performing library service: getWriters");
 final List<Writer> writers = libraryService.getWriters(library);

 System.out.println("Writers:");
 System.out.println("========");

 for(final Writer currentWriter : writers){
 System.out.println(currentWriter.getName());
 }

Every time the “library” model is passed to the service as a parameter and therefore checked

in implicitly. This is no problem with the size of the repository since it only stores the

differences but might increase the execution time. So be careful with the definition of the

service interface and keep the invocation pattern in mind. The model is not modified and

checked in again at the server side by the getWriters() operations therefore there is no need

to check it out again at the consumer.

ModelBus User Guide

195

Within the last block only the validity of the model is checked which will not change the

model:

 System.out.println("Performing library service: isLibraryModelValid");
 modelValid = libraryService.isLibraryModelValid(library);

 System.out.println("Model valid: " + modelValid);

Then the next loop starts adding a new writer and changing the model which has to be

checked out again …

A lot of printing to the console log is done from the consumer as well as from the producer

adapter. The flow of the execution within the example can be followed there. Keep in mind

that separate console windows for the consumer and producer exist – so you have to switch

them to see both outputs.

A look into the ModelBus repository after the execution of the library service consumer

adapter will show the following situation:

Abbildung 1 Resulting Library Model

The library meta-model can be found as well as the Ecore meta-model used to define it.

Opening the demo.library model in the text editor shows the content as XML.

 ModelBus User Guide

196

23.2.5 Direct Invocation of the Service using the WSDL

The service interface has been defined in section 23.2.2. A WSDL can be retrieved from the

running service by entering http://localhost:9090/libraryservice?wsdl in a web browser and

saving the (XML) result.

The WSDL can be inspected using a WSDL editor, e.g. the one from the eclipse Web Tool

Platform (WTP) project used here. This is possibly easier then reading the XML file directly.

Figure 157 The Library Service WSDL Interface

A closer look at the input parameters, e.g. of the addWriter() operation, shows the following

picture:

Figure 158 Input Parameters of the addWriter Operation in the WSDL

http://localhost:9090/libraryservice?wsdl

ModelBus User Guide

197

Instead of being of type library the first parameter is of type string, but its name is still

library. The reason for this is that the service expects the parameters with respect to the

ModelBus Interaction Pattern but the implicit actions (check-in and replacement by an URI)

at the consumer side are not performed automatically. So the service does not expect the

library model directly as a parameter here but instead of it an URI for it in the ModelBus

repository.

Using the WSDL of the service directly requests:

 to have an explicit and more detailed description of the service WSDL stating the

semantics of the operation parameters and

 to perform the eventually necessary check-in/checkout operations at the consumer

side explicitly .

23.3 The Source Code of the Java Adapter Implementation Classes used

In this section the complete source code for the library service example is listed without any

additional information.

23.3.1 The Library Service Interface

LibraryService.java:

package org.modelbus.library.example.service;

import java.util.List;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebResult;

import javax.jws.WebService;

import library.Library;

import library.Writer;

@WebService(targetNamespace = "http://www.modelbus.org/LibraryService/",

name = "LibraryService")

public interface LibraryService {

 @WebMethod(action =

"http://www.modelbus.org/LibraryService/addWriter")

 public void addWriter(

 @WebParam(name = "library", targetNamespace =

"http://www.modelbus.org/LibraryService/")

 Library library,

 @WebParam(name = "name", targetNamespace =

"http://www.modelbus.org/LibraryService/")

 String name

);

 @WebMethod(action =

"http://www.modelbus.org/LibraryService/isLibraryModelValid")

 ModelBus User Guide

198

 @WebResult(name = "valid", targetNamespace = "")

 public boolean isLibraryModelValid(

 @WebParam(name = "library", targetNamespace =

"http://www.modelbus.org/LibraryService/")

 Library library

);

 @WebMethod(action =

"http://www.modelbus.org/LibraryService/getWriters")

 @WebResult(name = "writers", targetNamespace = "")

 public List<Writer> getWriters(

 @WebParam(name = "library", targetNamespace =

"http://www.modelbus.org/LibraryService/")

 Library library

);

 @WebMethod(action =

"http://www.modelbus.org/LibraryService/getLooseWriters")

 @WebResult(name = "looseWriters", targetNamespace = "")

 public List<Writer> getLooseWriters(

 @WebParam(name = "library", targetNamespace =

"http://www.modelbus.org/LibraryService/")

 Library library

);

}

23.3.2 The Service Provider Adapter

Activator.java:

package org.modelbus.library.example.service;

import org.modelbus.ModelBusServiceConfiguration;

import

org.modelbus.core.lib.dosgi.AbstractModelBusAdapterProviderActivator;

import org.modelbus.core.lib.dosgi.RepositoryHelper;

public class Activator extends AbstractModelBusAdapterProviderActivator {

 @Override

 protected void configure(ModelBusServiceConfiguration config) {

 config.setServiceName("ModelBus library demo service");

 }

 @SuppressWarnings("unchecked")

 @Override

 protected Class getServiceInterface() {

 return LibraryService.class;

 }

 @Override

 protected Object createServiceInstance() {

 return new LibraryServiceImpl();

 }

 @Override

 public void registerRepositoryHelper(RepositoryHelper helper) {

 // do nothing

ModelBus User Guide

199

 }

}

LibraryServiceImpl.java:

package org.modelbus.library.example.service;

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

import org.eclipse.emf.ecore.resource.Resource;

import org.eclipse.emf.ecore.util.EcoreUtil;

import org.modelbus.core.lib.dosgi.ModelBusCoreLib;

import org.modelbus.dosgi.repository.descriptor.Property;

import org.modelbus.dosgi.repository.descriptor.Session;

import library.Library;

import library.LibraryFactory;

import library.Writer;

public class LibraryServiceImpl implements LibraryService {

 private OsloOCLEvaluator evaluator;

 public LibraryServiceImpl(){

 this.evaluator = new OsloOCLEvaluator();

 }

 private final static String[] OCL_EXPRESSIONS = new String[]{

 "context Library def: getWriters() : Set(Writer) =

self.writers",

 "context Library def: getLooseWriters() : Set(Writer) =

self.writers->select(w:Writer | w.books->isEmpty())"

 };

 private final static String OCL_WRITER_VALID = "context Writer inv:

self.name.size() > 0";

 @Override

 public void addWriter(final Library library, final String name) {

 final Writer writer = LibraryFactory.eINSTANCE.createWriter();

 writer.setName(name);

 library.getWriters().add(writer);

 final Resource res = library.eResource();

 try {

 ModelBusCoreLib.getRepositoryHelper().checkInModel(this.getSession(),

res, res.getURI());

 } catch (Exception e) {

 throw new RuntimeException(e);

 }

 }

 ModelBus User Guide

200

 @Override

 public List<Writer> getLooseWriters(Library library) {

 evaluator.addModel(library.eClass().getEPackage());

 this.initializeOCLProcessor();

 final String ocl = "context Library inv:

self.getLooseWriters()";

 final List<Object> results =

this.evaluator.evaluateExpression(library, ocl);

 return toWriterList(results);

 }

 @Override

 public List<Writer> getWriters(final Library library) {

 evaluator.addModel(library.eClass().getEPackage());

 this.initializeOCLProcessor();

 final String ocl = "context Library inv: self.getWriters()";

 final List<Object> results =

this.evaluator.evaluateExpression(library, ocl);

 return toWriterList(results);

 }

@Override

 public boolean isLibraryModelValid(final Library library) {

 evaluator.addModel(library.eClass().getEPackage());

 boolean valid = true;

 //check if library contains writers

 final List<Object> results1 =

this.evaluator.evaluateExpression(library, "context Library inv:

self.writers->notEmpty()");

 if((Boolean)results1.get(0) == false){

 System.out.println("Model is invalid: no writers");

 valid = false;

 }

 //check if library contains not more than 3 writers

 final List<Object> results2 =

this.evaluator.evaluateExpression(library, "context Library inv:

self.writers->size() < 4");

 if((Boolean)results2.get(0) == false){

 System.out.println("Model is invalid: more than 3

writers");

 valid = false;

 }

ModelBus User Guide

201

 //check if all writer names are not empty

 final List<Object> results3 =

this.evaluator.evaluateExpression(library, "context Library inv:

self.writers->select(w:Writer | w.name.size() = 0)->isEmpty()");

 if((Boolean)results3.get(0) == false){

 System.out.println("Model is invalid: empty writer name

detected");

 valid = false;

 }

 return valid;

 }

 private void initializeOCLProcessor(){

 for(final String oclExpression : OCL_EXPRESSIONS){

 this.evaluator.createOCLOperation(oclExpression);

 }

 }

 private Session getSession(){

 Session session = new Session();

 session.setId(EcoreUtil.generateUUID());

 Property propertyUserName = new Property();

 propertyUserName.setKey("username");

 propertyUserName.setValue("Admin");

 Property propertyPassword = new Property();

 propertyPassword.setKey("password");

 propertyPassword.setValue("ModelBus");

 session.getProperties().add(propertyUserName);

 session.getProperties().add(propertyPassword);

 return session;

 }

 @SuppressWarnings("unchecked")

 private static List<Writer> toWriterList(List<Object> list){

 final List<Writer> writers = new ArrayList<Writer>();

 final List<Object> subList = (List<Object>)list.get(0);

 for(final Object obj : subList){

 writers.add((Writer)obj);

 }

 return writers;

 }

}

OsloOCLEvaluator.java:

 ModelBus User Guide

202

package org.modelbus.library.example.service;

import java.util.List;

import org.eclipse.emf.ecore.EObject;

import org.eclipse.emf.ecore.EPackage;

import org.oslo.ocl20.OclProcessor;

import org.oslo.ocl20.bridge4emf.EmfOclProcessorImpl;

import org.oslo.ocl20.semantics.bridge.Environment;

import org.oslo.ocl20.synthesis.RuntimeEnvironment;

public class OsloOCLEvaluator {

 private OclProcessor processor;

 public OsloOCLEvaluator(){

 this.processor = new EmfOclProcessorImpl(new ExceptionLog());

 }

 @SuppressWarnings("unchecked")

 public List<Object> evaluateExpression(final EObject eobject, final

String expression) {

 final Environment env = this.processor.environment("self",

eobject.getClass());

 final RuntimeEnvironment renv =

this.processor.runtimeEnvironment("self", eobject);

 System.out.println("\tExpression: " + expression + " (on: " +

eobject + ")");

 List<Object> results = null;

 try {

 results = this.processor.evaluate(expression, env, renv,

this.processor.getLog());

 } catch (Exception e) {

 e.printStackTrace();

 }

 return results;

 }

 public EPackage addModel(final EPackage model){

 this.processor.addModel(model);

 return model;

 }

 public void createOCLOperation(final String def){

 System.out.println("\tCreating OCL expression: " + def);

 this.processor.analyse(def);

 }

}

ExceptionLog.java:

package org.modelbus.library.example.service;

ModelBus User Guide

203

import uk.ac.kent.cs.kmf.util.ILog;

public class ExceptionLog implements ILog {

 public ExceptionLog() {

 // TODO Auto-generated constructor stub

 }

 @Override

 public void close() {

 // TODO Auto-generated method stub

 }

 @Override

 public void finalReport() {

 // TODO Auto-generated method stub

 }

 @Override

 public int getErrors() {

 // TODO Auto-generated method stub

 return 0;

 }

 @Override

 public int getWarnings() {

 // TODO Auto-generated method stub

 return 0;

 }

 @Override

 public boolean hasErrors() {

 // TODO Auto-generated method stub

 return false;

 }

 @Override

 public boolean hasViolations() {

 // TODO Auto-generated method stub

 return false;

 }

 @Override

 public boolean hasWarnings() {

 // TODO Auto-generated method stub

 return false;

 }

 @Override

 public void printMessage(String arg0) {

 //throw new RuntimeException(arg0);

 }

 @Override

 ModelBus User Guide

204

 public void reportError(String arg0) {

 throw new RuntimeException(arg0);

 }

 @Override

 public void reportError(String arg0, Exception arg1) {

 throw new RuntimeException(arg1);

 }

 @Override

 public void reportMessage(String arg0) {

 // TODO Auto-generated method stub

 }

 @Override

 public void reportWarning(String arg0) {

 // TODO Auto-generated method stub

 }

 @Override

 public void reportWarning(String arg0, Exception arg1) {

 // TODO Auto-generated method stub

 }

 @Override

 public void reset() {

 // TODO Auto-generated method stub

 }

 @Override

 public void resetErrors() {

 // TODO Auto-generated method stub

 }

 @Override

 public void resetViolations() {

 // TODO Auto-generated method stub

 }

 @Override

 public void resetWarnings() {

 // TODO Auto-generated method stub

 }

 @Override

 public boolean tooManyViolations() {

 // TODO Auto-generated method stub

 return false;

 }

ModelBus User Guide

205

}

23.3.3 The Service Consumer Adapter

Activator.java:

package org.modelbus.library.example.service;

import java.io.IOException;

import java.util.List;

import library.Library;

import library.LibraryFactory;

import library.LibraryPackage;

import library.Writer;

import org.eclipse.emf.common.util.URI;

import org.eclipse.emf.ecore.EPackage;

import org.eclipse.emf.ecore.resource.Resource;

import org.eclipse.emf.ecore.resource.ResourceSet;

import org.eclipse.emf.ecore.resource.impl.ResourceSetImpl;

import org.eclipse.emf.ecore.util.EcoreUtil;

import org.modelbus.ModelBusServiceConfiguration;

import

org.modelbus.core.lib.dosgi.AbstractModelBusAdapterConsumerActivator;

import org.modelbus.core.lib.dosgi.RepositoryHelper;

import org.modelbus.dosgi.repository.descriptor.Property;

import org.modelbus.dosgi.repository.descriptor.Session;

public class Activator extends AbstractModelBusAdapterConsumerActivator {

 @Override

 protected void serviceRegistered(Object service) {

 Session session = new Session();

 session.setId(EcoreUtil.generateUUID());

 Property propertyUserName = new Property();

 propertyUserName.setKey("username");

 propertyUserName.setValue("Admin");

 Property propertyPassword = new Property();

 propertyPassword.setKey("password");

 propertyPassword.setValue("ModelBus");

 session.getProperties().add(propertyUserName);

 session.getProperties().add(propertyPassword);

 final LibraryService libraryService = (LibraryService)service;

 final ResourceSet set = new ResourceSetImpl();

 final Resource res1 =

set.createResource(URI.createURI("http://library.modelbus.org/demo.library"

));

 final EPackage p = LibraryPackage.eINSTANCE;

 ModelBus User Guide

206

 Library library = LibraryFactory.eINSTANCE.createLibrary();

 library.setName("Demo library");

 res1.getContents().add(library);

 System.out.println("Performing library service:

isLibraryModelValid");

 boolean modelValid =

libraryService.isLibraryModelValid(library);

 System.out.println("Model valid: " + modelValid);

 final String[] writerNames = new String[] { "Peter York",

"Susan Oxford", "Brian Woodstock", "Catherine Jones", "" };

 for(final String writerName : writerNames){

 System.out.println("Performing library service: addWriter

" + writerName);

 libraryService.addWriter(library, writerName);

 //checkout modified library

 final Resource res2 =

set.createResource(URI.createURI("http://library.modelbus.org/demo.library"

));

 try {

 ModelBusCoreLib.getRepositoryHelper().checkOutModel(session, res2);

 } catch (Exception e) {

 throw new RuntimeException(e);

 }

 library = (Library)res2.getContents().get(0);

 for(final Writer writer : library.getWriters()){

 System.out.println(writer);

 }

 System.out.println("Performing library service:

getWriters");

 final List<Writer> writers =

libraryService.getWriters(library);

 System.out.println("Writers:");

 System.out.println("========");

 for(final Writer currentWriter : writers){

 System.out.println(currentWriter.getName());

 }

 System.out.println("Performing library service:

isLibraryModelValid");

 modelValid = libraryService.isLibraryModelValid(library);

 System.out.println("Model valid: " + modelValid);

 }

 }

ModelBus User Guide

207

 @Override

 protected void configure(ModelBusServiceConfiguration config) {

 // TODO Auto-generated method stub

 }

 @SuppressWarnings("unchecked")

 @Override

 protected Class getServiceInterface() {

 return LibraryService.class;

 }

 @Override

 public void registerRepositoryHelper(RepositoryHelper helper) {

 // do nothing

 }

}

